Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
  • Clinical Research and Public Health
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Video Abstracts
  • Reviews
    • View all reviews ...
    • Complement Biology and Therapeutics (May 2025)
    • Evolving insights into MASLD and MASH pathogenesis and treatment (Apr 2025)
    • Microbiome in Health and Disease (Feb 2025)
    • Substance Use Disorders (Oct 2024)
    • Clonal Hematopoiesis (Oct 2024)
    • Sex Differences in Medicine (Sep 2024)
    • Vascular Malformations (Apr 2024)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Clinical Research and Public Health
    • Research Letters
    • Letters to the Editor
    • Editorials
    • Commentaries
    • Editor's notes
    • Reviews
    • Viewpoints
    • 100th anniversary
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Video Abstracts
  • In-Press Preview
  • Clinical Research and Public Health
  • Research Letters
  • Letters to the Editor
  • Editorials
  • Commentaries
  • Editor's notes
  • Reviews
  • Viewpoints
  • 100th anniversary
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact

Usage Information

Cellular basis for blunted volume expansion natriuresis in experimental nephrotic syndrome.
J P Valentin, … , D G Gardner, M H Humphreys
J P Valentin, … , D G Gardner, M H Humphreys
Published October 1, 1992
Citation Information: J Clin Invest. 1992;90(4):1302-1312. https://doi.org/10.1172/JCI115995.
View: Text | PDF
Research Article

Cellular basis for blunted volume expansion natriuresis in experimental nephrotic syndrome.

  • Text
  • PDF
Abstract

Experimental nephrotic syndrome results in sodium retention, reflecting, at least in part, an intrinsic defect in renal sodium handling in the distal nephron. We studied the relationships among plasma atrial natriuretic peptide (ANP) concentration, sodium excretion (UNaV), and urinary cyclic GMP excretion (UcGMPV) in vivo, and the responsiveness of isolated glomeruli and inner medullary collecting duct (IMCD) cells to ANP in vitro, in rats with adriamycin nephrosis (6-7 mg/kg body weight, intravenously). 3-5 wk after injection, rats were proteinuric and had a blunted natriuretic response to intravenous infusion of isotonic saline, 2% body weight given over 5 min. 30 min after onset of the infusion, plasma ANP concentrations were elevated in normals and were even higher in nephrotics. Despite this, nephrotic animals had a reduced rate of UcGMPV after the saline infusion, and accumulation of cGMP by isolated glomeruli and IMCD cells from nephrotic rats after incubation with ANP was significantly reduced compared to normals. This difference was not related to differences in binding of 125I-ANP to IMCD cells, but was abolished when cGMP accumulation was measured in the presence of 10(-3) M isobutylmethylxanthine or zaprinast (M&B 22,948), two different inhibitors of cyclic nucleotide phosphodiesterases (PDEs). Infusion of zaprinast (10 micrograms/min) into one renal artery of nephrotic rats normalized both the natriuretic response to volume expansion and the increase in UcGMPV from the infused, but not the contralateral, kidney. These results show that, in adriamycin nephrosis, blunted volume expansion natriuresis is associated with renal resistance to ANP, demonstrated both in vivo and in target tissues in vitro. The resistance does not appear related to a defect in binding of the peptide, but is blocked by PDE inhibitors, suggesting that enhanced cGMP-PDE activity may account for resistance to the natriuretic actions of ANP observed in vivo. This defect may represent the intrinsic sodium transport abnormality linked to sodium retention in nephrotic syndrome.

Authors

J P Valentin, C Qiu, W P Muldowney, W Z Ying, D G Gardner, M H Humphreys

×

Usage data is cumulative from May 2024 through May 2025.

Usage JCI PMC
Text version 121 5
PDF 45 15
Scanned page 402 5
Citation downloads 65 0
Totals 633 25
Total Views 658
(Click and drag on plot area to zoom in. Click legend items above to toggle)

Usage information is collected from two different sources: this site (JCI) and Pubmed Central (PMC). JCI information (compiled daily) shows human readership based on methods we employ to screen out robotic usage. PMC information (aggregated monthly) is also similarly screened of robotic usage.

Various methods are used to distinguish robotic usage. For example, Google automatically scans articles to add to its search index and identifies itself as robotic; other services might not clearly identify themselves as robotic, or they are new or unknown as robotic. Because this activity can be misinterpreted as human readership, data may be re-processed periodically to reflect an improved understanding of robotic activity. Because of these factors, readers should consider usage information illustrative but subject to change.

Advertisement

Copyright © 2025 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts