Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
  • Clinical Research and Public Health
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Video Abstracts
  • Reviews
    • View all reviews ...
    • Complement Biology and Therapeutics (May 2025)
    • Evolving insights into MASLD and MASH pathogenesis and treatment (Apr 2025)
    • Microbiome in Health and Disease (Feb 2025)
    • Substance Use Disorders (Oct 2024)
    • Clonal Hematopoiesis (Oct 2024)
    • Sex Differences in Medicine (Sep 2024)
    • Vascular Malformations (Apr 2024)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Clinical Research and Public Health
    • Research Letters
    • Letters to the Editor
    • Editorials
    • Commentaries
    • Editor's notes
    • Reviews
    • Viewpoints
    • 100th anniversary
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Video Abstracts
  • In-Press Preview
  • Clinical Research and Public Health
  • Research Letters
  • Letters to the Editor
  • Editorials
  • Commentaries
  • Editor's notes
  • Reviews
  • Viewpoints
  • 100th anniversary
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact

Usage Information

Epidermal keratinocyte-derived basophil promoting activity. Role of interleukin 3 and soluble CD23.
A H Dalloul, … , P Debré, M D Mossalayi
A H Dalloul, … , P Debré, M D Mossalayi
Published October 1, 1992
Citation Information: J Clin Invest. 1992;90(4):1242-1247. https://doi.org/10.1172/JCI115986.
View: Text | PDF
Research Article

Epidermal keratinocyte-derived basophil promoting activity. Role of interleukin 3 and soluble CD23.

  • Text
  • PDF
Abstract

Human epidermal keratinocytes (EK) secrete factors able to sustain the proliferation of early myeloid cells and, in particular, the generation of basophils. This activity was previously attributed to IL-3, although no definitive in situ demonstration of this cytokine was provided. In regard to the possible physiological relevance of these data, we investigated herein the nature of EK-derived factors responsible for basophil promotion. Our data show that EK-derived supernatants (EK-sup) contain IL-3 as well as soluble CD23 (sCD23), both known for their colony stimulating activity. Messenger RNA for IL-3 and CD23 were also detected in EK. Blocking experiments using specific neutralizing monoclonal antibodies (mAb) further indicate that EK-derived basophil promoting activity is mainly due to the presence of IL-3 and sCD23 in EK-sup. Furthermore, by contrast to IL-3, sCD23 secretion by EK is cortisone sensitive and highly enhanced by IL-4, suggesting distinct regulatory mechanisms for their production.

Authors

A H Dalloul, M Arock, C Fourcade, J Y Béranger, P Jaffray, P Debré, M D Mossalayi

×

Usage data is cumulative from May 2024 through May 2025.

Usage JCI PMC
Text version 81 0
PDF 46 15
Figure 0 5
Scanned page 236 6
Citation downloads 57 0
Totals 420 26
Total Views 446
(Click and drag on plot area to zoom in. Click legend items above to toggle)

Usage information is collected from two different sources: this site (JCI) and Pubmed Central (PMC). JCI information (compiled daily) shows human readership based on methods we employ to screen out robotic usage. PMC information (aggregated monthly) is also similarly screened of robotic usage.

Various methods are used to distinguish robotic usage. For example, Google automatically scans articles to add to its search index and identifies itself as robotic; other services might not clearly identify themselves as robotic, or they are new or unknown as robotic. Because this activity can be misinterpreted as human readership, data may be re-processed periodically to reflect an improved understanding of robotic activity. Because of these factors, readers should consider usage information illustrative but subject to change.

Advertisement

Copyright © 2025 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts