Basic fibroblast growth factor (bFGF) stimulates the replication of preadipocytes and inhibits their differentiation. In this study we explored whether the same or related polypeptides were produced locally and acted by paracrine/autocrine mechanisms in adipose tissue. Omental preadipocytes from 7 lean and 10 massively obese (> 170% reference) subjects were grown to confluence in subculture. Total RNA was hybridized with a synthetic deoxynucleotide for human bFGF. In the case of all cell strains, there was expression of two major bFGF transcripts, 7.0 and 3.7 kb. Although there was considerable variation in the degree of expression, preadipocytes from massively obese subjects revealed much greater expression than did cells from the lean (P < 0.001). In studies of conditioned media prepared with preadipocytes, the presence of proteins belonging to the heparin-binding (fibroblast) growth factor family was indicated by Western blot analysis, for a 66-kD protein with anti-(1-24)bFGF, and for a 32-kD protein with anti-(40-63)bFGF antibodies. The relative quantity of the 66-kD protein correlated with body mass index at r = 0.72. bFGF-related proteins probably function normally to maintain an appropriate complement of adipocyte precursors. The augmented expression of heparin-binding growth factors in preadipocytes from some massively obese people probably contributes to the excessive cellularity of their fat depots.
K Teichert-Kuliszewska, B S Hamilton, M Deitel, D A Roncari
Usage data is cumulative from April 2024 through April 2025.
Usage | JCI | PMC |
---|---|---|
Text version | 143 | 1 |
41 | 16 | |
Scanned page | 242 | 12 |
Citation downloads | 73 | 0 |
Totals | 499 | 29 |
Total Views | 528 |
Usage information is collected from two different sources: this site (JCI) and Pubmed Central (PMC). JCI information (compiled daily) shows human readership based on methods we employ to screen out robotic usage. PMC information (aggregated monthly) is also similarly screened of robotic usage.
Various methods are used to distinguish robotic usage. For example, Google automatically scans articles to add to its search index and identifies itself as robotic; other services might not clearly identify themselves as robotic, or they are new or unknown as robotic. Because this activity can be misinterpreted as human readership, data may be re-processed periodically to reflect an improved understanding of robotic activity. Because of these factors, readers should consider usage information illustrative but subject to change.