Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
  • Clinical Research and Public Health
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Video Abstracts
  • Reviews
    • View all reviews ...
    • Complement Biology and Therapeutics (May 2025)
    • Evolving insights into MASLD and MASH pathogenesis and treatment (Apr 2025)
    • Microbiome in Health and Disease (Feb 2025)
    • Substance Use Disorders (Oct 2024)
    • Clonal Hematopoiesis (Oct 2024)
    • Sex Differences in Medicine (Sep 2024)
    • Vascular Malformations (Apr 2024)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Clinical Research and Public Health
    • Research Letters
    • Letters to the Editor
    • Editorials
    • Commentaries
    • Editor's notes
    • Reviews
    • Viewpoints
    • 100th anniversary
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Video Abstracts
  • In-Press Preview
  • Clinical Research and Public Health
  • Research Letters
  • Letters to the Editor
  • Editorials
  • Commentaries
  • Editor's notes
  • Reviews
  • Viewpoints
  • 100th anniversary
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact

Usage Information

Regulation of Ca2+ influx in myeloid cells. Role of plasma membrane potential, inositol phosphates, cytosolic free [Ca2+], and filling state of intracellular Ca2+ stores.
N Demaurex, … , D P Lew, K H Krause
N Demaurex, … , D P Lew, K H Krause
Published September 1, 1992
Citation Information: J Clin Invest. 1992;90(3):830-839. https://doi.org/10.1172/JCI115958.
View: Text | PDF
Research Article

Regulation of Ca2+ influx in myeloid cells. Role of plasma membrane potential, inositol phosphates, cytosolic free [Ca2+], and filling state of intracellular Ca2+ stores.

  • Text
  • PDF
Abstract

To study the mediation of Ca2+ influx by second messengers in myeloid cells, we have combined the whole-cell patch clamp technique with microfluorimetric measurements of [Ca2+]i. Me2SO-differentiated HL-60 cells were loaded with the fluorescent Ca2+ indicator Indo-1, allowed to adhere to glass slides, and patch-clamped. Receptor agonists and Ca(2+)-ATPase inhibitors were applied by superfusion and inositol phosphates by microperfusion through the patch pipette. In voltage-clamped cells, [Ca2+]i elevations with a sustained phase could be induced by (a) the chemoattractant receptor agonist FMLP, (b) the Ca(2+)-releasing second messenger myo-inositol(1,4,5)trisphosphate [Ins(1,4,5)P3], as well as its nonmetabolizable analogues, and (c) the Ca(2+)-ATPase inhibitor cyclopiazonic acid, which depletes intracellular Ca2+ stores. In the absence of extracellular Ca2+, responses to all stimuli were short-lasting, monophasic transients; however, subsequent addition of Ca2+ to the extracellular medium led to an immediate [Ca2+]i increase. In all cases, the sustained phase of the [Ca2+]i elevations could be inhibited by millimolar concentrations of extracellular Ni2+, and its amplitude could be decreased by depolarization of the plasma membrane. Thus, the sustained phase of the Ca2+ elevations was due to Ca2+ influx through a pathway sensitive to the electrical driving force and to Ni2+. No Ca2+ influx could be observed after (a) plasma membrane depolarization in resting cells, (b) an imposed [Ca2+]i transient independent of receptor activation, or (c) microperfusion of myo-inositol(1,3,4,5)tetrahisphosphate (Ins(1,3,4,5)P4). Also, Ins(1,3,4,5)P4 did not have additive effects when co-perfused with a submaximal concentration of Ins(1,4,5)P3. Our results suggest that, in myeloid cells, activation of chemoattractant receptors induces an electrogenic, Ni(2+)-sensitive Ca2+ influx via generation of Ins(1,4,5)P3. Ins(1,4,5)P3 might activate Ca2+ influx directly, or by depletion of intracellular Ca2+ stores, but not via [Ca2+]i increase or Ins(1,3,4,5)P4 generation.

Authors

N Demaurex, W Schlegel, P Varnai, G Mayr, D P Lew, K H Krause

×

Usage data is cumulative from May 2024 through May 2025.

Usage JCI PMC
Text version 156 0
PDF 41 14
Scanned page 376 7
Citation downloads 63 0
Totals 636 21
Total Views 657
(Click and drag on plot area to zoom in. Click legend items above to toggle)

Usage information is collected from two different sources: this site (JCI) and Pubmed Central (PMC). JCI information (compiled daily) shows human readership based on methods we employ to screen out robotic usage. PMC information (aggregated monthly) is also similarly screened of robotic usage.

Various methods are used to distinguish robotic usage. For example, Google automatically scans articles to add to its search index and identifies itself as robotic; other services might not clearly identify themselves as robotic, or they are new or unknown as robotic. Because this activity can be misinterpreted as human readership, data may be re-processed periodically to reflect an improved understanding of robotic activity. Because of these factors, readers should consider usage information illustrative but subject to change.

Advertisement

Copyright © 2025 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts