Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
  • Clinical Research and Public Health
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Video Abstracts
  • Reviews
    • View all reviews ...
    • Complement Biology and Therapeutics (May 2025)
    • Evolving insights into MASLD and MASH pathogenesis and treatment (Apr 2025)
    • Microbiome in Health and Disease (Feb 2025)
    • Substance Use Disorders (Oct 2024)
    • Clonal Hematopoiesis (Oct 2024)
    • Sex Differences in Medicine (Sep 2024)
    • Vascular Malformations (Apr 2024)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Clinical Research and Public Health
    • Research Letters
    • Letters to the Editor
    • Editorials
    • Commentaries
    • Editor's notes
    • Reviews
    • Viewpoints
    • 100th anniversary
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Video Abstracts
  • In-Press Preview
  • Clinical Research and Public Health
  • Research Letters
  • Letters to the Editor
  • Editorials
  • Commentaries
  • Editor's notes
  • Reviews
  • Viewpoints
  • 100th anniversary
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact

Citations to this article

An intact cysteine-rich domain is required for dystrophin function.
R D Bies, … , C T Caskey, R Fenwick
R D Bies, … , C T Caskey, R Fenwick
Published August 1, 1992
Citation Information: J Clin Invest. 1992;90(2):666-672. https://doi.org/10.1172/JCI115909.
View: Text | PDF
Research Article

An intact cysteine-rich domain is required for dystrophin function.

  • Text
  • PDF
Abstract

The carboxyl terminus of dystrophin is encoded by a highly conserved, alternatively spliced region of the gene. The few rare mutations reported in this region are of interest in unraveling the function of the dystrophin molecule. An unusual case of infantile onset Duchenne muscular dystrophy (DMD) with an internal 3' genomic deletion, and a membrane localized non-functional dystrophin protein, was used to explore the functional activity of this region. The patient's cDNA sequence showed an intragenic 1824-bp deletion precisely excising the cysteine rich and alternatively spliced COOH-terminal domains of dystrophin. The unaltered final 2.7 kb of the patients transcript was defined as a single exon localized to two genomic fragments, with the 5.9 kb HindIII fragment containing the stop codon. To understand the significance of deletions in this important region of the dystrophin gene, we mapped the order and cDNA coordinates for the 3' genomic HindIII fragments encoding the cysteine rich and alternative splicing domains. This 3' gene map was used to compare the clinical phenotype of the other reported COOH-terminal deletions in the literature. Our analysis concludes that the cysteine-rich domain confers an important function for the dystrophin protein.

Authors

R D Bies, C T Caskey, R Fenwick

×

Loading citation information...
Advertisement

Copyright © 2025 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts