Adenine nucleotides speed structural and functional recovery when administered after experimental renal injury in the rat and stimulate proliferation of kidney epithelial cells. As cell migration is a component of renal regeneration after acute tubular necrosis, we have used an in vitro model of wound healing to study this process. High density, quiescent monkey kidney epithelial cultures were wounded by mechanically scraping away defined regions of the monolayer to simulate the effect of cell loss after tubular necrosis and the number of cells that migrated into the denuded area was counted. Migration was independent of cell proliferation. Provision of adenosine, adenine nucleotides, or cyclic AMP increased the number of migrating cells and accelerated repair of the wound. Other purine and pyrimidine nucleotides were not effective. Arginine-glycine-aspartic acid-serine peptide, which blocks the binding of extracellular fibronectin to its cell surface receptor, completely inhibited migration in the presence or absence of ADP. Very low concentrations of epidermal growth factor (K0.5 approximately 0.3 ng/ml) stimulated migration, whereas transforming growth factor-beta 2 was inhibitory (Ki approximately 0.2 ng/ml). Thus, adenosine and/or adenine nucleotides released from injured or dying renal cells, or administered exogenously, may stimulate surviving cells in the wounded nephron to migrate along the basement membrane, thereby rapidly restoring tubular structure and function.
S Kartha, F G Toback
Usage data is cumulative from January 2024 through January 2025.
Usage | JCI | PMC |
---|---|---|
Text version | 107 | 4 |
53 | 25 | |
Scanned page | 145 | 5 |
Citation downloads | 47 | 0 |
Totals | 352 | 34 |
Total Views | 386 |
Usage information is collected from two different sources: this site (JCI) and Pubmed Central (PMC). JCI information (compiled daily) shows human readership based on methods we employ to screen out robotic usage. PMC information (aggregated monthly) is also similarly screened of robotic usage.
Various methods are used to distinguish robotic usage. For example, Google automatically scans articles to add to its search index and identifies itself as robotic; other services might not clearly identify themselves as robotic, or they are new or unknown as robotic. Because this activity can be misinterpreted as human readership, data may be re-processed periodically to reflect an improved understanding of robotic activity. Because of these factors, readers should consider usage information illustrative but subject to change.