Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
  • Clinical Research and Public Health
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Video Abstracts
  • Reviews
    • View all reviews ...
    • Complement Biology and Therapeutics (May 2025)
    • Evolving insights into MASLD and MASH pathogenesis and treatment (Apr 2025)
    • Microbiome in Health and Disease (Feb 2025)
    • Substance Use Disorders (Oct 2024)
    • Clonal Hematopoiesis (Oct 2024)
    • Sex Differences in Medicine (Sep 2024)
    • Vascular Malformations (Apr 2024)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Clinical Research and Public Health
    • Research Letters
    • Letters to the Editor
    • Editorials
    • Commentaries
    • Editor's notes
    • Reviews
    • Viewpoints
    • 100th anniversary
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Video Abstracts
  • In-Press Preview
  • Clinical Research and Public Health
  • Research Letters
  • Letters to the Editor
  • Editorials
  • Commentaries
  • Editor's notes
  • Reviews
  • Viewpoints
  • 100th anniversary
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact

Usage Information

Effect of in vitro metabolic acidosis on luminal Na+/H+ exchange and basolateral Na+:HCO3- cotransport in rabbit kidney proximal tubules.
M Soleimani, … , T D McKinney, Y J Hattabaugh
M Soleimani, … , T D McKinney, Y J Hattabaugh
Published July 1, 1992
Citation Information: J Clin Invest. 1992;90(1):211-218. https://doi.org/10.1172/JCI115838.
View: Text | PDF
Research Article

Effect of in vitro metabolic acidosis on luminal Na+/H+ exchange and basolateral Na+:HCO3- cotransport in rabbit kidney proximal tubules.

  • Text
  • PDF
Abstract

The aim of this study was to evaluate the role of the kidney in mediating the signals involved in adaptive changes in luminal Na+/H+ exchange and basolateral Na+:HCO3- cotransport systems in metabolic acidosis. Proximal tubular suspensions were prepared from rabbit kidney cortex and incubated in acidic (A) or control (C) media (pH 6.9 vs 7.4, 5% CO2) for 2 h. Brush border membrane (BBM) and basolateral membrane (BLM) vesicles were isolated from the tubular suspensions and studied for the activity of Na+/H+ exchange and Na+:HCO3- cotransport. Influx of 1 mM 22Na at 10 s (pH6 7.5, pH(i) 6.0) into BBM vesicles was 68% higher in group A compared to group C. The increment in Na+ influx in the group A was amiloride sensitive, suggesting that Na+/H+ exchange was responsible for the observed differences. Kinetic analysis of Na+ influx showed a Km of 8.1 mM in C vs 9.2 in A and Vmax of 31 nmol/mg protein per min in group C vs 57 in A. Influx of 1 mM 22Na at 10 s (pH0 7.5, pH(i) 6.0, 20% CO2, 80% N2) into BLM vesicles was 83% higher in the group A compared to C. The HCO3-dependent increment in 22Na uptake in group A was 4,4'-diisothiocyano-2,2'-stilbene disulfonic acid sensitive, suggesting that Na+:HCO3- cotransport accounted for the observed differences. Kinetic analysis of Na+ influx showed a Km of 11.4 mM in C vs 13.6 in A and Vmax of 35 nmol/mg protein per min in C vs 64 in A. The presence of cyclohexamide during incubation in A medium had no effect on the increments in 22Na uptake in group A. We conclude that the adaptive increase in luminal Na+/H+ exchange and basolateral Na+:HCO3- cotransport systems in metabolic acidosis is acute and mediated via direct signal(s) at the level of renal tubule.

Authors

M Soleimani, G L Bizal, T D McKinney, Y J Hattabaugh

×

Usage data is cumulative from May 2024 through May 2025.

Usage JCI PMC
Text version 98 0
PDF 38 9
Scanned page 274 2
Citation downloads 51 0
Totals 461 11
Total Views 472
(Click and drag on plot area to zoom in. Click legend items above to toggle)

Usage information is collected from two different sources: this site (JCI) and Pubmed Central (PMC). JCI information (compiled daily) shows human readership based on methods we employ to screen out robotic usage. PMC information (aggregated monthly) is also similarly screened of robotic usage.

Various methods are used to distinguish robotic usage. For example, Google automatically scans articles to add to its search index and identifies itself as robotic; other services might not clearly identify themselves as robotic, or they are new or unknown as robotic. Because this activity can be misinterpreted as human readership, data may be re-processed periodically to reflect an improved understanding of robotic activity. Because of these factors, readers should consider usage information illustrative but subject to change.

Advertisement

Copyright © 2025 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts