Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
  • Clinical Research and Public Health
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Video Abstracts
  • Reviews
    • View all reviews ...
    • Complement Biology and Therapeutics (May 2025)
    • Evolving insights into MASLD and MASH pathogenesis and treatment (Apr 2025)
    • Microbiome in Health and Disease (Feb 2025)
    • Substance Use Disorders (Oct 2024)
    • Clonal Hematopoiesis (Oct 2024)
    • Sex Differences in Medicine (Sep 2024)
    • Vascular Malformations (Apr 2024)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Clinical Research and Public Health
    • Research Letters
    • Letters to the Editor
    • Editorials
    • Commentaries
    • Editor's notes
    • Reviews
    • Viewpoints
    • 100th anniversary
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Video Abstracts
  • In-Press Preview
  • Clinical Research and Public Health
  • Research Letters
  • Letters to the Editor
  • Editorials
  • Commentaries
  • Editor's notes
  • Reviews
  • Viewpoints
  • 100th anniversary
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact

Usage Information

Bile acid N-acetylglucosaminidation. In vivo and in vitro evidence for a selective conjugation reaction of 7 beta-hydroxylated bile acids in humans.
H U Marschall, … , S Matern, J Sjövall
H U Marschall, … , S Matern, J Sjövall
Published June 1, 1992
Citation Information: J Clin Invest. 1992;89(6):1981-1987. https://doi.org/10.1172/JCI115806.
View: Text | PDF
Research Article

Bile acid N-acetylglucosaminidation. In vivo and in vitro evidence for a selective conjugation reaction of 7 beta-hydroxylated bile acids in humans.

  • Text
  • PDF
Abstract

The aim of this study was to define whether N-acetylglucosaminidation is a selective conjugation pathway of structurally related bile acids in humans. The following bile acids released enzymatically from N-acetylglucosaminides were identified: 3 alpha,7 beta-dihydroxy-5 beta-cholanoic (ursodeoxycholic), 3 beta, 7 beta-dihydroxy-5 beta-cholanoic (isoursodeoxycholic), 3 beta,7 beta-dihydroxy-5 alpha-cholanoic (alloisoursodeoxycholic), 3 beta,7 beta-dihydroxy-5-cholenoic, 3 alpha,7 beta,12 alpha-trihydroxy-5 beta-cholanoic, and 3 alpha,6 alpha,7 beta-trihydroxy-5 beta-cholanoic acids. The selectivity of conjugation was studied by administration of 0.5 g ursodeoxycholic (UDCA) or hyodeoxycholic (HDCA) acids, labeled with 13C, to patients with extrahepatic cholestasis, and of 0.5 g of 13C-labeled chenodeoxycholic acid (CDCA) to patients with extra- or intrahepatic cholestasis. After administration of [24-13C]-CDCA, labeled glucosides, and the glucuronide of CDCA were excreted in similar amounts. Labeled N-acetylglucosaminides of UDCA and isoUDCA were also formed. When [24-13C]-UDCA was given, 13C-label was detected in the N-acetylglucosaminide, the glucosides, and the glucuronide of UDCA, and in the N-acetylglucosaminide of isoUDCA. In the patient studied, 32% of the total UDCA excreted in urine was conjugated with N-acetylglucosamine. In contrast, 96% of the excreted amount of [24-13C]HDCA was glucuronidated, and 13C-labeled glucosides but no N-acetylglucosaminide were detected. The selectivity of N-acetylglucosaminidation towards bile acids containing a 7 beta-hydroxyl group was confirmed in vitro using human liver and kidney microsomes and uridine diphosphate glucose (UDP)-N-acetylglucosamine. These studies show that N-acetylglucosaminidation is a selective conjugation pathway for 7 beta-hydroxylated bile acids.

Authors

H U Marschall, H Matern, H Wietholtz, B Egestad, S Matern, J Sjövall

×

Usage data is cumulative from May 2024 through May 2025.

Usage JCI PMC
Text version 200 7
PDF 53 14
Scanned page 294 2
Citation downloads 56 0
Totals 603 23
Total Views 626
(Click and drag on plot area to zoom in. Click legend items above to toggle)

Usage information is collected from two different sources: this site (JCI) and Pubmed Central (PMC). JCI information (compiled daily) shows human readership based on methods we employ to screen out robotic usage. PMC information (aggregated monthly) is also similarly screened of robotic usage.

Various methods are used to distinguish robotic usage. For example, Google automatically scans articles to add to its search index and identifies itself as robotic; other services might not clearly identify themselves as robotic, or they are new or unknown as robotic. Because this activity can be misinterpreted as human readership, data may be re-processed periodically to reflect an improved understanding of robotic activity. Because of these factors, readers should consider usage information illustrative but subject to change.

Advertisement

Copyright © 2025 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts