Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
  • Clinical Research and Public Health
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Video Abstracts
  • Reviews
    • View all reviews ...
    • Complement Biology and Therapeutics (May 2025)
    • Evolving insights into MASLD and MASH pathogenesis and treatment (Apr 2025)
    • Microbiome in Health and Disease (Feb 2025)
    • Substance Use Disorders (Oct 2024)
    • Clonal Hematopoiesis (Oct 2024)
    • Sex Differences in Medicine (Sep 2024)
    • Vascular Malformations (Apr 2024)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Clinical Research and Public Health
    • Research Letters
    • Letters to the Editor
    • Editorials
    • Commentaries
    • Editor's notes
    • Reviews
    • Viewpoints
    • 100th anniversary
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Video Abstracts
  • In-Press Preview
  • Clinical Research and Public Health
  • Research Letters
  • Letters to the Editor
  • Editorials
  • Commentaries
  • Editor's notes
  • Reviews
  • Viewpoints
  • 100th anniversary
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
Top
  • View PDF
  • Download citation information
  • Send a comment
  • Terms of use
  • Standard abbreviations
  • Need help? Email the journal
  • Top
  • Abstract
  • Version history
  • Article usage
  • Citations to this article

Advertisement

Research Article Free access | 10.1172/JCI115790

Potentiation of tubuloglomerular feedback in the rat by thromboxane mimetic. Role of macula densa.

W J Welch and C S Wilcox

Department of Medicine, College of Medicine, University of Florida.

Find articles by Welch, W. in: PubMed | Google Scholar

Department of Medicine, College of Medicine, University of Florida.

Find articles by Wilcox, C. in: PubMed | Google Scholar

Published June 1, 1992 - More info

Published in Volume 89, Issue 6 on June 1, 1992
J Clin Invest. 1992;89(6):1857–1865. https://doi.org/10.1172/JCI115790.
© 1992 The American Society for Clinical Investigation
Published June 1, 1992 - Version history
View PDF
Abstract

Because endogenous thromboxane A2 (TXA2) potentiates the tubuloglomerular feedback response (TGF), we studied the mechanism of action of TXA2 by using a stable TXA2/prostaglandin (PG) H2 mimetic, U-46,619. Intravenous infusion of U-46,619 at 100 ng.kg-1.min-1 reduced the GFR and the single-nephron (SN)GFR measured from the distal tubule (macula densa function intact), whereas the SNGFR measured from the proximal tubule (macula densa function interrupted) was not changed consistently. 10-100-fold higher rates of infusion of U-46,619 were required to raise blood pressure or femoral vascular resistance. The regulation of glomerular capillary pressure (PGC) by TGF was assessed in anesthetized rats from changes in proximal stop flow pressure (PSF) and/or SNGFR during perfusion of the loop of Henle (LH) with artificial tubular fluid (ATF). Orthograde loop perfusion and retrograde perfusion of U-46,619 into the macula densa segment reduced PSF. Responses to luminal U-46,619 were blunted by a TXA2-PGH2 receptor antagonist. Orthograde loop perfusions with luminal U-46,619 increased net Cl absorption, whereas coperfusion with furosemide (10(-4) M) blunted the response to U-46,619 by 68%. These data indicated that the luminal U-46,619 might increase the signal for TGF activation by increasing Cl reabsorption in macula densa cells. However, since 80 +/- 4% of [3H]U-46,619 perfused via the LH was reabsorbed peritubular capillaries (PTC) were perfused with U-46,619 to test additional extra-luminal actions. PTC perfusion with U-46,619 again increased TGF by reducing PSF selectively only while macula densa function was intact during perfusion of the LH with ATF. Conclusions: (a) TGF is potentiated by U-46,619 given systematically, via the lumen of the LH by orthograde or retrograde perfusions or via the PTC; (b) at the lower doses tested, reduction of PGC and SNGFR by U-46,619 depends on tubular fluid delivery and reabsorption by the macula densa; (c) potentiation of TGF by U-46,619 entails preglomerular vasoconstriction which may be elicited in part by an increased signal due to increased net chloride reabsorption in the LH and presumably macula densa cells and by an increased sensitivity of the arteriole to macula densa-derived signals; (d) activation of TGF may contribute to the selective vasoconstriction of the renal vascular bed by low doses of U-46,619.

Browse pages

Click on an image below to see the page. View PDF of the complete article

icon of scanned page 1857
page 1857
icon of scanned page 1858
page 1858
icon of scanned page 1859
page 1859
icon of scanned page 1860
page 1860
icon of scanned page 1861
page 1861
icon of scanned page 1862
page 1862
icon of scanned page 1863
page 1863
icon of scanned page 1864
page 1864
icon of scanned page 1865
page 1865
Version history
  • Version 1 (June 1, 1992): No description

Article tools

  • View PDF
  • Download citation information
  • Send a comment
  • Terms of use
  • Standard abbreviations
  • Need help? Email the journal

Metrics

  • Article usage
  • Citations to this article

Go to

  • Top
  • Abstract
  • Version history
Advertisement
Advertisement

Copyright © 2025 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts