Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
  • Clinical Research and Public Health
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Video Abstracts
  • Reviews
    • View all reviews ...
    • Complement Biology and Therapeutics (May 2025)
    • Evolving insights into MASLD and MASH pathogenesis and treatment (Apr 2025)
    • Microbiome in Health and Disease (Feb 2025)
    • Substance Use Disorders (Oct 2024)
    • Clonal Hematopoiesis (Oct 2024)
    • Sex Differences in Medicine (Sep 2024)
    • Vascular Malformations (Apr 2024)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Clinical Research and Public Health
    • Research Letters
    • Letters to the Editor
    • Editorials
    • Commentaries
    • Editor's notes
    • Reviews
    • Viewpoints
    • 100th anniversary
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Video Abstracts
  • In-Press Preview
  • Clinical Research and Public Health
  • Research Letters
  • Letters to the Editor
  • Editorials
  • Commentaries
  • Editor's notes
  • Reviews
  • Viewpoints
  • 100th anniversary
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
Top
  • View PDF
  • Download citation information
  • Send a comment
  • Terms of use
  • Standard abbreviations
  • Need help? Email the journal
  • Top
  • Abstract
  • Version history
  • Article usage
  • Citations to this article

Advertisement

Research Article Free access | 10.1172/JCI115645

Apolipoprotein(a) phenotypes, Lp(a) concentration and plasma lipid levels in relation to coronary heart disease in a Chinese population: evidence for the role of the apo(a) gene in coronary heart disease.

C Sandholzer, E Boerwinkle, N Saha, M C Tong, and G Utermann

Institute for Medical Biology and Human Genetics, University of Innsbruck, Austria.

Find articles by Sandholzer, C. in: JCI | PubMed | Google Scholar

Institute for Medical Biology and Human Genetics, University of Innsbruck, Austria.

Find articles by Boerwinkle, E. in: JCI | PubMed | Google Scholar

Institute for Medical Biology and Human Genetics, University of Innsbruck, Austria.

Find articles by Saha, N. in: JCI | PubMed | Google Scholar

Institute for Medical Biology and Human Genetics, University of Innsbruck, Austria.

Find articles by Tong, M. in: JCI | PubMed | Google Scholar

Institute for Medical Biology and Human Genetics, University of Innsbruck, Austria.

Find articles by Utermann, G. in: JCI | PubMed | Google Scholar

Published March 1, 1992 - More info

Published in Volume 89, Issue 3 on March 1, 1992
J Clin Invest. 1992;89(3):1040–1046. https://doi.org/10.1172/JCI115645.
© 1992 The American Society for Clinical Investigation
Published March 1, 1992 - Version history
View PDF
Abstract

Elevated lipoprotein(a) (Lp[a]) concentrations are associated with premature coronary heart disease (CHD). In the general population, Lp(a) levels are largely determined by alleles at the hypervariable apolipoprotein(a) (apo[a]) gene locus, but other genetic and environmental factors also affect plasma Lp(a) levels. In addition, Lp(a) has been hypothesized to be an acute phase protein. It is therefore unclear whether the association of Lp(a) concentrations with CHD is primary in nature. We have analyzed apo(a) phenotypes, Lp(a) levels, total cholesterol, and HDL-cholesterol in patients with CHD, and in controls from the general population. Both samples were Chinese individuals residing in Singapore. Lp(a) concentrations were significantly higher in the patients than in the population (mean 20.7 +/- 23.9 mg/dl vs 8.9 +/- 12.9 mg/dl). Apo(a) isoforms associated with high Lp(a) levels (B, S1, S2) were significantly more frequent in the CHD patients than in the population sample (15.9% vs 8.5%, P less than 0.01). Higher Lp(a) concentrations in the patients were in part explained by this difference in apo(a) allele frequencies. Results from stepwise logistic regression analysis indicate that apo(a) type was a significant predictor of CHD, independent of total cholesterol and HDL cholesterol, but not independent of Lp(a) levels. The data demonstrate that alleles at the apo(a) locus determine the risk for CHD through their effects on Lp(a) levels, and firmly establish the role of Lp(a) as a primary genetic risk factor for CHD.

Browse pages

Click on an image below to see the page. View PDF of the complete article

icon of scanned page 1040
page 1040
icon of scanned page 1041
page 1041
icon of scanned page 1042
page 1042
icon of scanned page 1043
page 1043
icon of scanned page 1044
page 1044
icon of scanned page 1045
page 1045
icon of scanned page 1046
page 1046
Version history
  • Version 1 (March 1, 1992): No description

Article tools

  • View PDF
  • Download citation information
  • Send a comment
  • Terms of use
  • Standard abbreviations
  • Need help? Email the journal

Metrics

  • Article usage
  • Citations to this article

Go to

  • Top
  • Abstract
  • Version history
Advertisement
Advertisement

Copyright © 2025 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts