Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
  • Clinical Research and Public Health
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Video Abstracts
  • Reviews
    • View all reviews ...
    • Complement Biology and Therapeutics (May 2025)
    • Evolving insights into MASLD and MASH pathogenesis and treatment (Apr 2025)
    • Microbiome in Health and Disease (Feb 2025)
    • Substance Use Disorders (Oct 2024)
    • Clonal Hematopoiesis (Oct 2024)
    • Sex Differences in Medicine (Sep 2024)
    • Vascular Malformations (Apr 2024)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Clinical Research and Public Health
    • Research Letters
    • Letters to the Editor
    • Editorials
    • Commentaries
    • Editor's notes
    • Reviews
    • Viewpoints
    • 100th anniversary
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Video Abstracts
  • In-Press Preview
  • Clinical Research and Public Health
  • Research Letters
  • Letters to the Editor
  • Editorials
  • Commentaries
  • Editor's notes
  • Reviews
  • Viewpoints
  • 100th anniversary
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact

Usage Information

Identification of three mutant alleles of the gene for mitochondrial acetoacetyl-coenzyme A thiolase. A complete analysis of two generations of a family with 3-ketothiolase deficiency.
T Fukao, … , T Osumi, T Hashimoto
T Fukao, … , T Osumi, T Hashimoto
Published February 1, 1992
Citation Information: J Clin Invest. 1992;89(2):474-479. https://doi.org/10.1172/JCI115608.
View: Text | PDF
Research Article

Identification of three mutant alleles of the gene for mitochondrial acetoacetyl-coenzyme A thiolase. A complete analysis of two generations of a family with 3-ketothiolase deficiency.

  • Text
  • PDF
Abstract

3-Ketothiolase deficiency (3KTD) stems from a deficiency of mitochondrial acetoacetyl-coenzyme A thiolase (T2). We analyzed the molecular basis of 3KTD in two generations of a family. A boy (patient 2, GK04), his father (patient 1, GK05), his mother, and his brother were studied; three mutant alleles of T2 gene were identified. Patient 1 is a compound heterozygote: one allele has a point mutation of G to A at position 547 on his T2 cDNA, causing Gly150 to Arg substitution of the mature T2 subunit, and the other allele has GT to TT transition at the 5' splice site of intron 8, causing exon 8's skipping of the T2 cDNA. Patient 2 is also a compound heterozygote: one allele inherited from his mother has AG to CG transition at the 3' splice site of intron 10, causing exon 11's skipping of the T2 cDNA, and the other allele derived from patient 1 has the G to A mutation (Gly to Arg). The brother of patient 2 is an obligatory carrier with the mutant allele causing the exon 8 skipping. This report seems to be the first complete molecular definition of 3KTD at the gene level.

Authors

T Fukao, S Yamaguchi, T Orii, R B Schutgens, T Osumi, T Hashimoto

×

Usage data is cumulative from May 2024 through May 2025.

Usage JCI PMC
Text version 166 14
PDF 58 36
Scanned page 231 1
Citation downloads 60 0
Totals 515 51
Total Views 566
(Click and drag on plot area to zoom in. Click legend items above to toggle)

Usage information is collected from two different sources: this site (JCI) and Pubmed Central (PMC). JCI information (compiled daily) shows human readership based on methods we employ to screen out robotic usage. PMC information (aggregated monthly) is also similarly screened of robotic usage.

Various methods are used to distinguish robotic usage. For example, Google automatically scans articles to add to its search index and identifies itself as robotic; other services might not clearly identify themselves as robotic, or they are new or unknown as robotic. Because this activity can be misinterpreted as human readership, data may be re-processed periodically to reflect an improved understanding of robotic activity. Because of these factors, readers should consider usage information illustrative but subject to change.

Advertisement

Copyright © 2025 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts