Cytotoxic T lymphocytes (CTL) specific for human immunodeficiency virus (HIV) proteins have been analyzed in lymphoid organs from seropositive patients. Indeed, an active HIV replication coexists with a major CD8+ lymphocytic infiltration in these organs. We have shown in a previous report that HIV-seropositive patients lungs were infiltrated by HIV specific CD8+ lymphocytes. In the present report, we show that HIV-specific CTL responses can also be detected in lymph nodes and spleens, and were mainly directed against the ENV, GAG, and NEF HIV-1 proteins. The primary NEF-specific CTL responses were further characterized by epitope mapping. Determination of epitope-specific CTL frequencies were performed by limiting dilution analysis. Our results indicated that, in addition to the central region of NEF (AA66-148), a new immunodominant region is recognized by CTL. This region corresponds to the carboxyl-terminal domain of NEF (amino acids 182-206). AA182-206 is recognized in association with at least two common human histocompatibility leukocyte antigen (HLA) molecules (HLA-A1 and B8), with clonal frequencies of one CTL per 10(-5) to 10(-6) splenic lymphocytes. Our data indicate that lymphoid organs may represent a major reservoir for in vivo activated HIV-specific CTL. Furthermore, the carboxyl-terminal domain of NEF was found to be conserved among several HIV strains. Therefore, our finding is of interest for further HIV vaccines development.
F Hadida, A Parrot, M P Kieny, B Sadat-Sowti, C Mayaud, P Debre, B Autran
Usage data is cumulative from November 2023 through November 2024.
Usage | JCI | PMC |
---|---|---|
Text version | 115 | 0 |
53 | 16 | |
Figure | 0 | 1 |
Scanned page | 278 | 6 |
Citation downloads | 41 | 0 |
Totals | 487 | 23 |
Total Views | 510 |
Usage information is collected from two different sources: this site (JCI) and Pubmed Central (PMC). JCI information (compiled daily) shows human readership based on methods we employ to screen out robotic usage. PMC information (aggregated monthly) is also similarly screened of robotic usage.
Various methods are used to distinguish robotic usage. For example, Google automatically scans articles to add to its search index and identifies itself as robotic; other services might not clearly identify themselves as robotic, or they are new or unknown as robotic. Because this activity can be misinterpreted as human readership, data may be re-processed periodically to reflect an improved understanding of robotic activity. Because of these factors, readers should consider usage information illustrative but subject to change.