Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
  • Clinical Research and Public Health
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Video Abstracts
  • Reviews
    • View all reviews ...
    • Complement Biology and Therapeutics (May 2025)
    • Evolving insights into MASLD and MASH pathogenesis and treatment (Apr 2025)
    • Microbiome in Health and Disease (Feb 2025)
    • Substance Use Disorders (Oct 2024)
    • Clonal Hematopoiesis (Oct 2024)
    • Sex Differences in Medicine (Sep 2024)
    • Vascular Malformations (Apr 2024)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Clinical Research and Public Health
    • Research Letters
    • Letters to the Editor
    • Editorials
    • Commentaries
    • Editor's notes
    • Reviews
    • Viewpoints
    • 100th anniversary
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Video Abstracts
  • In-Press Preview
  • Clinical Research and Public Health
  • Research Letters
  • Letters to the Editor
  • Editorials
  • Commentaries
  • Editor's notes
  • Reviews
  • Viewpoints
  • 100th anniversary
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
Top
  • View PDF
  • Download citation information
  • Send a comment
  • Terms of use
  • Standard abbreviations
  • Need help? Email the journal
  • Top
  • Abstract
  • Version history
  • Article usage
  • Citations to this article

Advertisement

Research Article Free access | 10.1172/JCI115576

Ca-mediated stimulation of Cl secretion by reactive oxygen metabolites in human colonic T84 cells.

H Tamai, T S Gaginella, J F Kachur, M W Musch, and E B Chang

Searle Research and Development, Skokie, Illinois 60077.

Find articles by Tamai, H. in: JCI | PubMed | Google Scholar

Searle Research and Development, Skokie, Illinois 60077.

Find articles by Gaginella, T. in: JCI | PubMed | Google Scholar

Searle Research and Development, Skokie, Illinois 60077.

Find articles by Kachur, J. in: JCI | PubMed | Google Scholar

Searle Research and Development, Skokie, Illinois 60077.

Find articles by Musch, M. in: JCI | PubMed | Google Scholar

Searle Research and Development, Skokie, Illinois 60077.

Find articles by Chang, E. in: JCI | PubMed | Google Scholar

Published January 1, 1992 - More info

Published in Volume 89, Issue 1 on January 1, 1992
J Clin Invest. 1992;89(1):301–307. https://doi.org/10.1172/JCI115576.
© 1992 The American Society for Clinical Investigation
Published January 1, 1992 - Version history
View PDF
Abstract

Monochloramine (NH2Cl), a granulocyte-derived reactive oxygen metabolite (ROM), increases short-circuit current (Isc) in cultured T84 monolayers in a concentration-dependent manner up to nonlethal concentrations of 75 microM. Isc increases slowly after NH2Cl, reaching a peak value of 18 +/- 2 microA/cm2 20 min after addition. The Isc changes are persistent (lasting over 20-30 min), depend on medium Cl, and are inhibitable with bumetanide. 36Cl flux studies demonstrated that NH2Cl increases serosa-to-mucosa flux of Cl without changing mucosa-to-serosa flux, consistent with stimulation of electrogenic Cl secretion. Isc responses to NH2Cl, but not PGE2, are dependent on medium calcium. As demonstrated in fura-2-loaded T84 cells, NH2Cl increases free cytosolic calcium by influx of extracellular Ca2+ and by release of Ca2+ from endogenous stores. However, NH2Cl had no effect on phosphatidylinositol metabolism or cyclic nucleotide levels. We conclude that ROM directly stimulate electrolyte secretion, an effect in part mediated by increases in cytosolic Ca2+, possibly through increasing Ca2+ permeability of cellular membranes.

Browse pages

Click on an image below to see the page. View PDF of the complete article

icon of scanned page 301
page 301
icon of scanned page 302
page 302
icon of scanned page 303
page 303
icon of scanned page 304
page 304
icon of scanned page 305
page 305
icon of scanned page 306
page 306
icon of scanned page 307
page 307
Version history
  • Version 1 (January 1, 1992): No description

Article tools

  • View PDF
  • Download citation information
  • Send a comment
  • Terms of use
  • Standard abbreviations
  • Need help? Email the journal

Metrics

  • Article usage
  • Citations to this article

Go to

  • Top
  • Abstract
  • Version history
Advertisement
Advertisement

Copyright © 2025 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts