Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
  • Clinical Research and Public Health
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Video Abstracts
  • Reviews
    • View all reviews ...
    • Complement Biology and Therapeutics (May 2025)
    • Evolving insights into MASLD and MASH pathogenesis and treatment (Apr 2025)
    • Microbiome in Health and Disease (Feb 2025)
    • Substance Use Disorders (Oct 2024)
    • Clonal Hematopoiesis (Oct 2024)
    • Sex Differences in Medicine (Sep 2024)
    • Vascular Malformations (Apr 2024)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Clinical Research and Public Health
    • Research Letters
    • Letters to the Editor
    • Editorials
    • Commentaries
    • Editor's notes
    • Reviews
    • Viewpoints
    • 100th anniversary
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Video Abstracts
  • In-Press Preview
  • Clinical Research and Public Health
  • Research Letters
  • Letters to the Editor
  • Editorials
  • Commentaries
  • Editor's notes
  • Reviews
  • Viewpoints
  • 100th anniversary
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact

Usage Information

Active site-blocked factor IXa prevents intravascular thrombus formation in the coronary vasculature without inhibiting extravascular coagulation in a canine thrombosis model.
C R Benedict, … , P Tijburg, D Stern
C R Benedict, … , P Tijburg, D Stern
Published November 1, 1991
Citation Information: J Clin Invest. 1991;88(5):1760-1765. https://doi.org/10.1172/JCI115495.
View: Text | PDF
Research Article Article has an altmetric score of 9

Active site-blocked factor IXa prevents intravascular thrombus formation in the coronary vasculature without inhibiting extravascular coagulation in a canine thrombosis model.

  • Text
  • PDF
Abstract

To assess the contribution of Factor IX/IXa, to intravascular thrombosis, a canine coronary thrombosis model was studied. Thrombus formation was initiated by applying current to a needle in the circumflex coronary artery. When 50% occlusion of the vessel developed, the current was stopped and animals received an intravenous bolus of either saline, bovine glutamyl-glycyl-arginyl-Factor IXa (IXai), a competitive inhibitor of Factor IXa assembly into the intrinsic Factor X activation complex, bovine Factor IX, or heparin. Animals receiving saline or Factor IX developed coronary occlusion due to a fibrin/platelet thrombus in 70 +/- 11 min. In contrast, infusion of IXai prevented thrombus formation completely (greater than 180 min) at doses of 460 and 300 micrograms/kg, and partially blocked thrombus formation at 150 micrograms/kg. IXai attenuated the accumulation of 125I-fibrinogen/fibrin at the site of the thrombus by approximately 67% (P less than 0.001) and resulted in approximately 26% decrease in serotonin release from platelets in coronary sinus (P less than 0.05). Hemostatic variables in animals receiving IXai, remained within normal limits. Animals given heparin in a concentration sufficient to prevent occlusive thrombosis had markedly increased bleeding, whereas heparin levels that maintained extravascular hemostasis did not prevent intracoronary thrombosis. This suggests that Factor IX/IXa can contribute to thrombus formation, and that inhibition of IXa participation in the clotting mechanism blocks intravascular thrombosis without impairing extravascular hemostasis.

Authors

C R Benedict, J Ryan, B Wolitzky, R Ramos, M Gerlach, P Tijburg, D Stern

×

Usage data is cumulative from May 2024 through May 2025.

Usage JCI PMC
Text version 127 2
PDF 42 14
Scanned page 212 5
Citation downloads 62 0
Totals 443 21
Total Views 464
(Click and drag on plot area to zoom in. Click legend items above to toggle)

Usage information is collected from two different sources: this site (JCI) and Pubmed Central (PMC). JCI information (compiled daily) shows human readership based on methods we employ to screen out robotic usage. PMC information (aggregated monthly) is also similarly screened of robotic usage.

Various methods are used to distinguish robotic usage. For example, Google automatically scans articles to add to its search index and identifies itself as robotic; other services might not clearly identify themselves as robotic, or they are new or unknown as robotic. Because this activity can be misinterpreted as human readership, data may be re-processed periodically to reflect an improved understanding of robotic activity. Because of these factors, readers should consider usage information illustrative but subject to change.

Advertisement

Copyright © 2025 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts

Referenced in 10 patents
15 readers on Mendeley
See more details