Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
  • Clinical Research and Public Health
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Video Abstracts
  • Reviews
    • View all reviews ...
    • Complement Biology and Therapeutics (May 2025)
    • Evolving insights into MASLD and MASH pathogenesis and treatment (Apr 2025)
    • Microbiome in Health and Disease (Feb 2025)
    • Substance Use Disorders (Oct 2024)
    • Clonal Hematopoiesis (Oct 2024)
    • Sex Differences in Medicine (Sep 2024)
    • Vascular Malformations (Apr 2024)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Clinical Research and Public Health
    • Research Letters
    • Letters to the Editor
    • Editorials
    • Commentaries
    • Editor's notes
    • Reviews
    • Viewpoints
    • 100th anniversary
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Video Abstracts
  • In-Press Preview
  • Clinical Research and Public Health
  • Research Letters
  • Letters to the Editor
  • Editorials
  • Commentaries
  • Editor's notes
  • Reviews
  • Viewpoints
  • 100th anniversary
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
Top
  • View PDF
  • Download citation information
  • Send a comment
  • Terms of use
  • Standard abbreviations
  • Need help? Email the journal
  • Top
  • Abstract
  • Version history
Article has an altmetric score of 3

See more details

Referenced in 1 patents
12 readers on Mendeley
  • Article usage
  • Citations to this article (41)

Advertisement

Research Article Free access | 10.1172/JCI115490

Molecular and metabolic basis for the metabolic disorder normotriglyceridemic abetalipoproteinemia.

D A Hardman, C R Pullinger, R L Hamilton, J P Kane, and M J Malloy

Cardiovascular Research Institute, University of California, San Francisco 94143-0130.

Find articles by Hardman, D. in: PubMed | Google Scholar

Cardiovascular Research Institute, University of California, San Francisco 94143-0130.

Find articles by Pullinger, C. in: PubMed | Google Scholar

Cardiovascular Research Institute, University of California, San Francisco 94143-0130.

Find articles by Hamilton, R. in: PubMed | Google Scholar

Cardiovascular Research Institute, University of California, San Francisco 94143-0130.

Find articles by Kane, J. in: PubMed | Google Scholar

Cardiovascular Research Institute, University of California, San Francisco 94143-0130.

Find articles by Malloy, M. in: PubMed | Google Scholar

Published November 1, 1991 - More info

Published in Volume 88, Issue 5 on November 1, 1991
J Clin Invest. 1991;88(5):1722–1729. https://doi.org/10.1172/JCI115490.
© 1991 The American Society for Clinical Investigation
Published November 1, 1991 - Version history
View PDF
Abstract

We have previously described a disorder, normotriglyceridemic abetalipoproteinemia, that is characterized by the virtual absence of plasma low density lipoproteins and complete absence of apoB-100, but with apparently normal secretion of triglyceride-rich lipoproteins containing apoB-48. The patient's plasma lipoproteins were shown on polyacrylamide gels and by antibody mapping to have a new truncated apoB variant, apoB-50, circulating along with her apoB-48. We have found this individual to be homozygous for a single C-to-T nucleotide substitution at apoB codon 2252, which produces a premature in-frame stop codon. Thus, this is a rare example of homozygous hypobetalipoproteinemia. Electron photomicrographs revealed that the diameters of particles in the d less than 1.006 g/ml lipoprotein fraction, in both the postprandial and postabsorptive state, are bimodally distributed. The molar ratio of apoE to apoB in these particles is 3.5:1, similar to normal VLDL. The plasma LDL interval contains both spherical and cuboidal particles. Autologous reinfusion of labeled d less than 1.006 g/ml lipoproteins showed exponential disappearance from plasma, with an apparent half-removal time of 50 min, somewhat slower than for normal chylomicrons but within the normal range for VLDL. The calculated production rate for apoB was within the normal range in this subject. A very small amount of label was found briefly in the IDL fraction, but none at any time in LDL or HDL. Therefore, because LDL particles that contain apoB-50 lack the putative ligand domain of the LDL receptor, we conclude that the very low level of LDL is due to the rapid removal of the abnormal VLDL particles before their conversion to LDL can take place.

Images.

Browse pages

Click on an image below to see the page. View PDF of the complete article

icon of scanned page 1722
page 1722
icon of scanned page 1723
page 1723
icon of scanned page 1724
page 1724
icon of scanned page 1725
page 1725
icon of scanned page 1726
page 1726
icon of scanned page 1727
page 1727
icon of scanned page 1728
page 1728
icon of scanned page 1729
page 1729
Version history
  • Version 1 (November 1, 1991): No description

Article tools

  • View PDF
  • Download citation information
  • Send a comment
  • Terms of use
  • Standard abbreviations
  • Need help? Email the journal

Metrics

Article has an altmetric score of 3
  • Article usage
  • Citations to this article (41)

Go to

  • Top
  • Abstract
  • Version history
Advertisement
Advertisement

Copyright © 2025 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts

Referenced in 1 patents
12 readers on Mendeley
See more details