Systemic lysis may protect against the platelet activation and ongoing thrombosis associated with coronary thrombolysis. To address this hypothesis, we compared urokinase and tissue-type plasminogen activator (t-PA) given intravenously in a chronic, canine model of coronary thrombosis. T-PA 10 micrograms/kg per min induced reperfusion in 55 +/- 7 min but complete reocclusion occurred in 9/10 animals. Reocclusion was prevented by combining t-PA with 7E3, an antibody to the platelet glycoprotein IIb/IIIa which abolished ex vivo platelet aggregation. A similar time to reperfusion was seen with urokinase 750-1,000 U/kg per min. In contrast to t-PA, complete reocclusion occurred in only 1/20 cases (P less than 0.001 vs. t-PA), despite evidence of continued platelet activation in vivo and platelet aggregation ex vivo. Furthermore, this did not reflect a difference in the clearance of the two plasminogen activators. However, plasma fibrinogen was undetectable after urokinase in contrast with t-PA. Furthermore, in animals treated with prourokinase 20 micrograms/kg per min, reocclusion (4/7) correlated with the degree of systemic lysis. To determine whether platelet activation modified the response to urokinase, it was combined with 7E3. 7E3 0.8 mg/kg reduced the time to reperfusion with t-PA (30 +/- 5, n = 6; P = 0.025), but not with urokinase (56 +/- 8 vs. 62 +/- 6, P = ns). Systemic lysis protects against the propensity of continued thrombosis during coronary thrombolysis to delay reperfusion and induce reocclusion. This may modify the requirement for adjunctive antiplatelet therapy.
D J Fitzgerald, M Hanson, G A FitzGerald
Usage data is cumulative from December 2023 through December 2024.
Usage | JCI | PMC |
---|---|---|
Text version | 116 | 0 |
89 | 14 | |
Scanned page | 257 | 13 |
Citation downloads | 43 | 0 |
Totals | 505 | 27 |
Total Views | 532 |
Usage information is collected from two different sources: this site (JCI) and Pubmed Central (PMC). JCI information (compiled daily) shows human readership based on methods we employ to screen out robotic usage. PMC information (aggregated monthly) is also similarly screened of robotic usage.
Various methods are used to distinguish robotic usage. For example, Google automatically scans articles to add to its search index and identifies itself as robotic; other services might not clearly identify themselves as robotic, or they are new or unknown as robotic. Because this activity can be misinterpreted as human readership, data may be re-processed periodically to reflect an improved understanding of robotic activity. Because of these factors, readers should consider usage information illustrative but subject to change.