Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
  • Clinical Research and Public Health
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Video Abstracts
  • Reviews
    • View all reviews ...
    • Complement Biology and Therapeutics (May 2025)
    • Evolving insights into MASLD and MASH pathogenesis and treatment (Apr 2025)
    • Microbiome in Health and Disease (Feb 2025)
    • Substance Use Disorders (Oct 2024)
    • Clonal Hematopoiesis (Oct 2024)
    • Sex Differences in Medicine (Sep 2024)
    • Vascular Malformations (Apr 2024)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Clinical Research and Public Health
    • Research Letters
    • Letters to the Editor
    • Editorials
    • Commentaries
    • Editor's notes
    • Reviews
    • Viewpoints
    • 100th anniversary
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Video Abstracts
  • In-Press Preview
  • Clinical Research and Public Health
  • Research Letters
  • Letters to the Editor
  • Editorials
  • Commentaries
  • Editor's notes
  • Reviews
  • Viewpoints
  • 100th anniversary
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
Top
  • View PDF
  • Download citation information
  • Send a comment
  • Terms of use
  • Standard abbreviations
  • Need help? Email the journal
  • Top
  • Abstract
  • Version history
  • Article usage
  • Citations to this article (15)

Advertisement

Research Article Free access | 10.1172/JCI115464

Deficiency in phosphorylase phosphatase activity despite elevated protein phosphatase type-1 catalytic subunit in skeletal muscle from insulin-resistant subjects.

B L Nyomba, D L Brautigan, K K Schlender, W Wang, C Bogardus, and D M Mott

Clinical Diabetes and Nutrition Section, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Phoenix, Arizona 85016.

Find articles by Nyomba, B. in: JCI | PubMed | Google Scholar

Clinical Diabetes and Nutrition Section, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Phoenix, Arizona 85016.

Find articles by Brautigan, D. in: JCI | PubMed | Google Scholar

Clinical Diabetes and Nutrition Section, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Phoenix, Arizona 85016.

Find articles by Schlender, K. in: JCI | PubMed | Google Scholar

Clinical Diabetes and Nutrition Section, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Phoenix, Arizona 85016.

Find articles by Wang, W. in: JCI | PubMed | Google Scholar

Clinical Diabetes and Nutrition Section, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Phoenix, Arizona 85016.

Find articles by Bogardus, C. in: JCI | PubMed | Google Scholar

Clinical Diabetes and Nutrition Section, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Phoenix, Arizona 85016.

Find articles by Mott, D. in: JCI | PubMed | Google Scholar

Published November 1, 1991 - More info

Published in Volume 88, Issue 5 on November 1, 1991
J Clin Invest. 1991;88(5):1540–1545. https://doi.org/10.1172/JCI115464.
© 1991 The American Society for Clinical Investigation
Published November 1, 1991 - Version history
View PDF
Abstract

Glycogen synthase is activated by protein phosphatase type-1 (PP-1). The spontaneous PP-1 activity accounts for only a small fraction of total PP-1 activity, which can be exposed by trypsin digestion of inhibitor proteins in the presence of Mn2+. We determined total PP-1 activity in muscle biopsies from insulin-sensitive and -resistant nondiabetic Pima Indians. Inhibitor-2 sensitive PP-1 represented 90% of total phosphatase activity. Spontaneous and total PP-1 activities were reduced in insulin resistant subjects (P less than 0.05-0.01), suggesting that the reduced PP-1 activity is not the result of inhibition by trypsin-labile phosphatase regulatory subunits. This difference was further investigated by Western blots using two different antibodies. An antibody raised against the rabbit muscle PP-1 catalytic subunit was used to analyze muscle extracts concentrated by DEAE-Sepharose adsorption. An antibody raised against a peptide derived from the COOH-terminal end of the PP-1 catalytic subunit was used to analyze crude muscle extracts. Both antibodies recognized a PP-1 catalytic subunit of approximately 33 kD, which unexpectedly was more abundant in insulin-resistant subjects (P less than 0.05-0.01). The increase in the tissue PP-1 protein content may be a response to compensate for the impairment in the enzyme activity.

Images.

Browse pages

Click on an image below to see the page. View PDF of the complete article

icon of scanned page 1540
page 1540
icon of scanned page 1541
page 1541
icon of scanned page 1542
page 1542
icon of scanned page 1543
page 1543
icon of scanned page 1544
page 1544
icon of scanned page 1545
page 1545
Version history
  • Version 1 (November 1, 1991): No description

Article tools

  • View PDF
  • Download citation information
  • Send a comment
  • Terms of use
  • Standard abbreviations
  • Need help? Email the journal

Metrics

  • Article usage
  • Citations to this article (15)

Go to

  • Top
  • Abstract
  • Version history
Advertisement
Advertisement

Copyright © 2025 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts