Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
  • Clinical Research and Public Health
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Video Abstracts
  • Reviews
    • View all reviews ...
    • Complement Biology and Therapeutics (May 2025)
    • Evolving insights into MASLD and MASH pathogenesis and treatment (Apr 2025)
    • Microbiome in Health and Disease (Feb 2025)
    • Substance Use Disorders (Oct 2024)
    • Clonal Hematopoiesis (Oct 2024)
    • Sex Differences in Medicine (Sep 2024)
    • Vascular Malformations (Apr 2024)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Clinical Research and Public Health
    • Research Letters
    • Letters to the Editor
    • Editorials
    • Commentaries
    • Editor's notes
    • Reviews
    • Viewpoints
    • 100th anniversary
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Video Abstracts
  • In-Press Preview
  • Clinical Research and Public Health
  • Research Letters
  • Letters to the Editor
  • Editorials
  • Commentaries
  • Editor's notes
  • Reviews
  • Viewpoints
  • 100th anniversary
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact

Usage Information

Escherichia coli hemolysin is a potent inductor of phosphoinositide hydrolysis and related metabolic responses in human neutrophils.
F Grimminger, … , N Suttorp, W Seeger
F Grimminger, … , N Suttorp, W Seeger
Published November 1, 1991
Citation Information: J Clin Invest. 1991;88(5):1531-1539. https://doi.org/10.1172/JCI115463.
View: Text | PDF
Research Article

Escherichia coli hemolysin is a potent inductor of phosphoinositide hydrolysis and related metabolic responses in human neutrophils.

  • Text
  • PDF
Abstract

Escherichia coli hemolysin (Hly) is a proteinaceous pore-forming exotoxin that probably represents a significant virulence factor in E. coli infections. We investigated its influence on human polymorphonuclear neutrophils (PMN), previously identified as highly susceptible targets. Hly provoked rapid secretion of elastase and myeloperoxidase, generation of superoxide, and synthesis of platelet-activating factor (PAF) and lyso-PAF. Concomitantly, marked phosphatidylinositol (PtdIns) hydrolysis with sequential appearance of the inositol-phosphates, inositol-phosphates, inositol triphosphate, diphosphate, and monophosphate, respectively, and formation of diacylglycerol, occurred. The metabolic responses displayed distinct bell-shaped dose dependencies, with maximum events noted at low toxin concentrations of 0.1-0.5 hemolytic units per milliliter. PtdIns hydrolysis and metabolic responses elicited by Hly exceeded those evoked by optimal concentrations of formylmethionyl-leucyl phenylalanine, PAF, leukotriene B4, A23187, or staphylococcal alpha-toxin. The toxin-induced effects were sensitive toward modulators of PMN stimulus transmission pathways (pertussis toxin, the kinase C inhibitor H7, and phorbol myristate acetate "priming"). We conclude that the marked capacity of low doses of Hly to elicit degranulation, respiratory burst, and lipid mediator generation in human PMN probably envolves signal transduction via PtdIns hydrolysis.

Authors

F Grimminger, U Sibelius, S Bhakdi, N Suttorp, W Seeger

×

Usage data is cumulative from May 2024 through May 2025.

Usage JCI PMC
Text version 169 5
PDF 44 16
Scanned page 299 3
Citation downloads 57 0
Totals 569 24
Total Views 593
(Click and drag on plot area to zoom in. Click legend items above to toggle)

Usage information is collected from two different sources: this site (JCI) and Pubmed Central (PMC). JCI information (compiled daily) shows human readership based on methods we employ to screen out robotic usage. PMC information (aggregated monthly) is also similarly screened of robotic usage.

Various methods are used to distinguish robotic usage. For example, Google automatically scans articles to add to its search index and identifies itself as robotic; other services might not clearly identify themselves as robotic, or they are new or unknown as robotic. Because this activity can be misinterpreted as human readership, data may be re-processed periodically to reflect an improved understanding of robotic activity. Because of these factors, readers should consider usage information illustrative but subject to change.

Advertisement

Copyright © 2025 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts