Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
  • Clinical Research and Public Health
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Video Abstracts
  • Reviews
    • View all reviews ...
    • Complement Biology and Therapeutics (May 2025)
    • Evolving insights into MASLD and MASH pathogenesis and treatment (Apr 2025)
    • Microbiome in Health and Disease (Feb 2025)
    • Substance Use Disorders (Oct 2024)
    • Clonal Hematopoiesis (Oct 2024)
    • Sex Differences in Medicine (Sep 2024)
    • Vascular Malformations (Apr 2024)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Clinical Research and Public Health
    • Research Letters
    • Letters to the Editor
    • Editorials
    • Commentaries
    • Editor's notes
    • Reviews
    • Viewpoints
    • 100th anniversary
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Video Abstracts
  • In-Press Preview
  • Clinical Research and Public Health
  • Research Letters
  • Letters to the Editor
  • Editorials
  • Commentaries
  • Editor's notes
  • Reviews
  • Viewpoints
  • 100th anniversary
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact

Usage Information

Role of endothelial-leukocyte adhesion molecule 1 (ELAM-1) in neutrophil-mediated lung injury in rats.
M S Mulligan, … , D C Anderson, P A Ward
M S Mulligan, … , D C Anderson, P A Ward
Published October 1, 1991
Citation Information: J Clin Invest. 1991;88(4):1396-1406. https://doi.org/10.1172/JCI115446.
View: Text | PDF
Research Article Article has an altmetric score of 3

Role of endothelial-leukocyte adhesion molecule 1 (ELAM-1) in neutrophil-mediated lung injury in rats.

  • Text
  • PDF
Abstract

Two murine monoclonal antibodies (CL-3 and CL-37, both F(ab')2) to human endothelial-leukocyte adhesion molecule-1 (ELAM-1) were found to react immunohistochemically with rat pulmonary artery endothelial cells that had been pretreated with tumor necrosis factor (TNF alpha). CL-3, but not CL-37, blocked in vitro adherence of neutrophils to TNF alpha-treated endothelial cells and the killing of TNF alpha-treated rat endothelial cells by phorbol ester activated neutrophils. In rats treated systemically with CL-3, there was a 70% reduction in accumulation of neutrophils in glycogen-induced peritoneal exudates. Treatment of animals with CL-37 anti-ELAM-1 did not reduce neutrophil accumulation under the same conditions. When IgG immune complex deposition was induced in dermis and in lungs of rats, treatment with CL-3 anti-ELAM-1 markedly reduced vascular injury as measured by changes in vascular permeability (leakage of 125I-albumin) and hemorrhage (extravasation of 51Cr-red blood cells). The protective effects of CL-3 anti-ELAM-1 were related to greatly diminished recruitment of neutrophils (as assessed morphologically, by tissue extraction of myeloperoxidase, and by retrieval, via bronchoalveolar lavage, of neutrophils from lung). CL-37 had no protective effects in vivo after deposition of immune complexes in lung. Using either CL-3 or CL-37 anti-ELAM-1, immunohistochemical analysis of lungs undergoing IgG immune complex-induced injury revealed a striking upregulation of ELAM-1 in the lung vasculature (venules and interstitial capillaries), with a peak intensity developing between 3 and 4 h after deposition of immune complexes in lung. Vascular beds of spleen, liver, and kidney failed to show upregulation of ELAM-1 under these same conditions. The immunohistochemical reactivity of rat lung was abolished if the anti-ELAM-1 preparation was first absorbed with monolayers of human umbilical vein endothelial cells that had been pretreated with TNF alpha. Untreated human endothelial cells failed to cause loss of lung reactivity of the anti-ELAM-1 preparation. These data indicate that ELAM-1 is upregulated in the pulmonary vasculature of rats during deposition of immune complexes and that ELAM-1 appears to play an obligate role in the recruitment of neutrophils.

Authors

M S Mulligan, J Varani, M K Dame, C L Lane, C W Smith, D C Anderson, P A Ward

×

Usage data is cumulative from May 2024 through May 2025.

Usage JCI PMC
Text version 247 13
PDF 52 27
Figure 0 9
Scanned page 379 1
Citation downloads 47 0
Totals 725 50
Total Views 775
(Click and drag on plot area to zoom in. Click legend items above to toggle)

Usage information is collected from two different sources: this site (JCI) and Pubmed Central (PMC). JCI information (compiled daily) shows human readership based on methods we employ to screen out robotic usage. PMC information (aggregated monthly) is also similarly screened of robotic usage.

Various methods are used to distinguish robotic usage. For example, Google automatically scans articles to add to its search index and identifies itself as robotic; other services might not clearly identify themselves as robotic, or they are new or unknown as robotic. Because this activity can be misinterpreted as human readership, data may be re-processed periodically to reflect an improved understanding of robotic activity. Because of these factors, readers should consider usage information illustrative but subject to change.

Advertisement

Copyright © 2025 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts

Referenced in 42 patents
15 readers on Mendeley
See more details