Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
  • Clinical Research and Public Health
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Video Abstracts
  • Reviews
    • View all reviews ...
    • Complement Biology and Therapeutics (May 2025)
    • Evolving insights into MASLD and MASH pathogenesis and treatment (Apr 2025)
    • Microbiome in Health and Disease (Feb 2025)
    • Substance Use Disorders (Oct 2024)
    • Clonal Hematopoiesis (Oct 2024)
    • Sex Differences in Medicine (Sep 2024)
    • Vascular Malformations (Apr 2024)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Clinical Research and Public Health
    • Research Letters
    • Letters to the Editor
    • Editorials
    • Commentaries
    • Editor's notes
    • Reviews
    • Viewpoints
    • 100th anniversary
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Video Abstracts
  • In-Press Preview
  • Clinical Research and Public Health
  • Research Letters
  • Letters to the Editor
  • Editorials
  • Commentaries
  • Editor's notes
  • Reviews
  • Viewpoints
  • 100th anniversary
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
Top
  • View PDF
  • Download citation information
  • Send a comment
  • Terms of use
  • Standard abbreviations
  • Need help? Email the journal
  • Top
  • Abstract
  • Version history
  • Article usage
  • Citations to this article

Advertisement

Research Article Free access | 10.1172/JCI115444

Sodium uptake across basolateral membrane of rat distal colon. Evidence for Na-H exchange and Na-anion cotransport.

V M Rajendran, M Oesterlin, and H J Binder

Department of Internal Medicine, Yale University School of Medicine, New Haven, Connecticut 06510.

Find articles by Rajendran, V. in: PubMed | Google Scholar

Department of Internal Medicine, Yale University School of Medicine, New Haven, Connecticut 06510.

Find articles by Oesterlin, M. in: PubMed | Google Scholar

Department of Internal Medicine, Yale University School of Medicine, New Haven, Connecticut 06510.

Find articles by Binder, H. in: PubMed | Google Scholar

Published October 1, 1991 - More info

Published in Volume 88, Issue 4 on October 1, 1991
J Clin Invest. 1991;88(4):1379–1385. https://doi.org/10.1172/JCI115444.
© 1991 The American Society for Clinical Investigation
Published October 1, 1991 - Version history
View PDF
Abstract

This study sought to characterize the mechanism of Na transport across basolateral membrane vesicles of rat distal colon. Both an outward proton gradient and an inward bicarbonate gradient stimulated 22Na uptake. Proton gradient-stimulated 22Na uptake was activated severalfold by the additional presence of an inward bicarbonate gradient, and bicarbonate gradient-stimulated 22Na uptake was significantly enhanced by an imposed intravesicular membrane positive potential. 0.1 mM amiloride inhibited both proton gradient- and bicarbonate gradient-stimulated 22Na uptake by 80 and 95%, respectively, while 1 mM 4,4'-diisothiocyanatostilbene-2,2'-disulfonic acid (DIDS) inhibited both proton gradient- and bicarbonate gradient-stimulated 22Na uptake by 40 and 80%, respectively. Both proton gradient- and bicarbonate gradient-stimulated 22Na uptake saturated as a function of increasing Na concentration: the apparent kinetic constants (Km) for Na for the DIDS-insensitive component of proton gradient-stimulated 22Na uptake was 46.4 mM, while the DIDS-sensitive component of proton gradient- and bicarbonate gradient-stimulated 22Na uptake had Km for Na of 8.1 and 6.4 mM, respectively. Amiloride inhibited both DIDS-insensitive proton gradient- and bicarbonate gradient-stimulated 22Na uptake with an inhibitory constant (Ki) of approximately 35 and 1 microM, respectively. We conclude from these results that proton gradient-stimulated 22Na uptake represents both DIDS-insensitive Na-H exchange and DIDS-sensitive electrogenic Na-OH cotransport, and that the DIDS-sensitive component of proton gradient-stimulated 22Na uptake and bicarbonate gradient-stimulated 22Na uptake may represent the same electrogenic Na-anion cotransport process.

Images.

Browse pages

Click on an image below to see the page. View PDF of the complete article

icon of scanned page 1379
page 1379
icon of scanned page 1380
page 1380
icon of scanned page 1381
page 1381
icon of scanned page 1382
page 1382
icon of scanned page 1383
page 1383
icon of scanned page 1384
page 1384
icon of scanned page 1385
page 1385
Version history
  • Version 1 (October 1, 1991): No description

Article tools

  • View PDF
  • Download citation information
  • Send a comment
  • Terms of use
  • Standard abbreviations
  • Need help? Email the journal

Metrics

  • Article usage
  • Citations to this article

Go to

  • Top
  • Abstract
  • Version history
Advertisement
Advertisement

Copyright © 2025 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts