Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
  • Clinical Research and Public Health
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Video Abstracts
  • Reviews
    • View all reviews ...
    • Complement Biology and Therapeutics (May 2025)
    • Evolving insights into MASLD and MASH pathogenesis and treatment (Apr 2025)
    • Microbiome in Health and Disease (Feb 2025)
    • Substance Use Disorders (Oct 2024)
    • Clonal Hematopoiesis (Oct 2024)
    • Sex Differences in Medicine (Sep 2024)
    • Vascular Malformations (Apr 2024)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Clinical Research and Public Health
    • Research Letters
    • Letters to the Editor
    • Editorials
    • Commentaries
    • Editor's notes
    • Reviews
    • Viewpoints
    • 100th anniversary
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Video Abstracts
  • In-Press Preview
  • Clinical Research and Public Health
  • Research Letters
  • Letters to the Editor
  • Editorials
  • Commentaries
  • Editor's notes
  • Reviews
  • Viewpoints
  • 100th anniversary
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
Top
  • View PDF
  • Download citation information
  • Send a comment
  • Terms of use
  • Standard abbreviations
  • Need help? Email the journal
  • Top
  • Abstract
  • Version history
  • Article usage
  • Citations to this article (59)

Advertisement

Research Article Free access | 10.1172/JCI115434

Lipoprotein lipase modulates net secretory output of apolipoprotein B in vitro. A possible pathophysiologic explanation for familial combined hyperlipidemia.

K J Williams, K A Petrie, R W Brocia, and T L Swenson

Department of Physiology and Biochemistry, Medical College of Pennsylvania, Philadelphia 19129.

Find articles by Williams, K. in: JCI | PubMed | Google Scholar

Department of Physiology and Biochemistry, Medical College of Pennsylvania, Philadelphia 19129.

Find articles by Petrie, K. in: JCI | PubMed | Google Scholar

Department of Physiology and Biochemistry, Medical College of Pennsylvania, Philadelphia 19129.

Find articles by Brocia, R. in: JCI | PubMed | Google Scholar

Department of Physiology and Biochemistry, Medical College of Pennsylvania, Philadelphia 19129.

Find articles by Swenson, T. in: JCI | PubMed | Google Scholar

Published October 1, 1991 - More info

Published in Volume 88, Issue 4 on October 1, 1991
J Clin Invest. 1991;88(4):1300–1306. https://doi.org/10.1172/JCI115434.
© 1991 The American Society for Clinical Investigation
Published October 1, 1991 - Version history
View PDF
Abstract

We showed previously that net secretory output of apolipoprotein B (apo B) from cultured human hepatoma cells (HepG2) is regulated by rapid reuptake of nascent lipoproteins before they have diffused away from the vicinity of the cells. We now sought to determine if the nascent lipoproteins could be remodeled to enhance or impede reuptake. We found that lipoprotein lipase (LpL), an enzyme that hydrolyzes lipoprotein triglyceride, reduced HepG2 output of apo B to one-quarter to one-half of control. The reduction was apparent during co-incubations as short as 2 h and as long as 24 h. Heparin, which blocks receptor-mediated binding of lipoproteins, abolished the effect of LpL on apo B output, without causing enzyme inhibition. To assess uptake directly, we prepared labeled nascent lipoproteins. LpL tripled the cellular uptake of labeled nascent lipoproteins, from 15.2% +/- 0.7% to 48.7% +/- 0.3% of the total applied to the cells. Cellular uptake of 125I-labeled anti-LDL receptor IgG was unaffected by LpL; thus, LpL enhanced reuptake by altering lipoproteins, not receptors. Because LpL is present in the space of Disse in the liver, we conclude that LpL may act on newly secreted lipoproteins to enhance reuptake in vivo. LpL deficiency would reduce local reuptake of apo B, which would appear as overproduction, thereby providing a mechanistic link between partial LpL deficiency and familial combined hyperlipidemia.

Browse pages

Click on an image below to see the page. View PDF of the complete article

icon of scanned page 1300
page 1300
icon of scanned page 1301
page 1301
icon of scanned page 1302
page 1302
icon of scanned page 1303
page 1303
icon of scanned page 1304
page 1304
icon of scanned page 1305
page 1305
icon of scanned page 1306
page 1306
Version history
  • Version 1 (October 1, 1991): No description

Article tools

  • View PDF
  • Download citation information
  • Send a comment
  • Terms of use
  • Standard abbreviations
  • Need help? Email the journal

Metrics

  • Article usage
  • Citations to this article (59)

Go to

  • Top
  • Abstract
  • Version history
Advertisement
Advertisement

Copyright © 2025 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts