Myeloperoxidase (MPO), H2O2, and chloride comprise a potent antimicrobial system believed to contribute to the antimicrobial functions of neutrophils and monocytes. The mechanisms of microbicidal action are complex and not fully defined. This report describes the MPO-mediated inactivation, in Escherichia coli, Staphylococcus aureus, and Pseudomonas aeruginosa, of a class of cytoplasmic membrane enzymes (penicillin-binding proteins, PBPs) found in all eubacteria, that covalently bind beta-lactam antibiotics to their active sites with loss of enzymatic activity. Inactivation of "essential" PBPs, including PBP1-PBP3 of E. coli, leads to unbalanced bacterial growth and cell death. MPO treatment of bacteria was associated with loss of penicillin binding by PBPs, strongly suggesting PBP inactivation. In E. coli, PBP inactivation was most rapid with PBP3, where the rate of decline in binding activity approximated but did not equal loss of viability. Changes in E. coli morphology (elongation), observed just before bacteriolysis, were consistent with early predominant inactivation of PBP3. We conclude that inactivation of essential PBPs is sufficient to account for an important fraction of MPO-mediated bacterial action. This feature of MPO action interestingly recapitulates an antibacterial strategy evolved by beta-lactam-producing molds that must compete with bacteria for limited ecologic niches.
R M Rakita, H Rosen
Usage data is cumulative from December 2023 through December 2024.
Usage | JCI | PMC |
---|---|---|
Text version | 94 | 0 |
89 | 18 | |
Figure | 0 | 2 |
Scanned page | 179 | 7 |
Citation downloads | 49 | 0 |
Totals | 411 | 27 |
Total Views | 438 |
Usage information is collected from two different sources: this site (JCI) and Pubmed Central (PMC). JCI information (compiled daily) shows human readership based on methods we employ to screen out robotic usage. PMC information (aggregated monthly) is also similarly screened of robotic usage.
Various methods are used to distinguish robotic usage. For example, Google automatically scans articles to add to its search index and identifies itself as robotic; other services might not clearly identify themselves as robotic, or they are new or unknown as robotic. Because this activity can be misinterpreted as human readership, data may be re-processed periodically to reflect an improved understanding of robotic activity. Because of these factors, readers should consider usage information illustrative but subject to change.