Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
  • Clinical Research and Public Health
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Video Abstracts
  • Reviews
    • View all reviews ...
    • Complement Biology and Therapeutics (May 2025)
    • Evolving insights into MASLD and MASH pathogenesis and treatment (Apr 2025)
    • Microbiome in Health and Disease (Feb 2025)
    • Substance Use Disorders (Oct 2024)
    • Clonal Hematopoiesis (Oct 2024)
    • Sex Differences in Medicine (Sep 2024)
    • Vascular Malformations (Apr 2024)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Clinical Research and Public Health
    • Research Letters
    • Letters to the Editor
    • Editorials
    • Commentaries
    • Editor's notes
    • Reviews
    • Viewpoints
    • 100th anniversary
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Video Abstracts
  • In-Press Preview
  • Clinical Research and Public Health
  • Research Letters
  • Letters to the Editor
  • Editorials
  • Commentaries
  • Editor's notes
  • Reviews
  • Viewpoints
  • 100th anniversary
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
Top
  • View PDF
  • Download citation information
  • Send a comment
  • Terms of use
  • Standard abbreviations
  • Need help? Email the journal
  • Top
  • Abstract
  • Version history
  • Article usage
  • Citations to this article (38)

Advertisement

Research Article Free access | 10.1172/JCI115370

A Cl- channel activated by parathyroid hormone in rabbit renal proximal tubule cells.

M Suzuki, T Morita, K Hanaoka, Y Kawaguchi, and O Sakai

Second Department of Internal Medicine, Jikei University, Tokyo, Japan.

Find articles by Suzuki, M. in: JCI | PubMed | Google Scholar

Second Department of Internal Medicine, Jikei University, Tokyo, Japan.

Find articles by Morita, T. in: JCI | PubMed | Google Scholar

Second Department of Internal Medicine, Jikei University, Tokyo, Japan.

Find articles by Hanaoka, K. in: JCI | PubMed | Google Scholar

Second Department of Internal Medicine, Jikei University, Tokyo, Japan.

Find articles by Kawaguchi, Y. in: JCI | PubMed | Google Scholar

Second Department of Internal Medicine, Jikei University, Tokyo, Japan.

Find articles by Sakai, O. in: JCI | PubMed | Google Scholar

Published September 1, 1991 - More info

Published in Volume 88, Issue 3 on September 1, 1991
J Clin Invest. 1991;88(3):735–742. https://doi.org/10.1172/JCI115370.
© 1991 The American Society for Clinical Investigation
Published September 1, 1991 - Version history
View PDF
Abstract

Previous data suggested an active Cl- conductance in the renal proximal convoluted tubule, although single channel conductance and regulation were not found. We have investigated the presence and regulation of the Cl- channel in proximal convoluted tubules by patch clamp analysis. The current-voltage relationship of whole cells with 130 mM NaCl in the pipette was nonlinear. The addition of 1-34 PTH (10(-8) M), forskolin, or cAMP significantly increased whole cell Cl- conductance. We found a single Cl- channel in excised apical membranes possessing conductance of 33 picosiemens (pS) at positive and 22.5 pS at negative potential, which was blocked by 4,4'-diisothiocyanostilbene-2,2'- disulfonic acid (10(-4) M) and was selective to Cl- (Cl/Na = 10). The channel was activated by prolonged membrane depolarization, by a catalytic subunit of protein kinase A (PKA), or by purified kinase C (PKC), but not by Ca2+ (1 microM) inside the membrane. During cell-attached patch clamping, the channel was similarly activated by PTH, phorbol ester, or dibutyryl cAMP in a dose-dependent manner. To investigate second messenger contributions to the PTH-action, the PTH-evoked channels were modified further by the subsequent addition of several blockers of the second messengers. This suggested that PKA and PKC were involved in Cl- channel activation. We therefore conclude that renal proximal convoluted tubule cells possess an apical Cl- channel activated by PTH via the PKA and PKC pathways.

Browse pages

Click on an image below to see the page. View PDF of the complete article

icon of scanned page 735
page 735
icon of scanned page 736
page 736
icon of scanned page 737
page 737
icon of scanned page 738
page 738
icon of scanned page 739
page 739
icon of scanned page 740
page 740
icon of scanned page 741
page 741
icon of scanned page 742
page 742
Version history
  • Version 1 (September 1, 1991): No description

Article tools

  • View PDF
  • Download citation information
  • Send a comment
  • Terms of use
  • Standard abbreviations
  • Need help? Email the journal

Metrics

  • Article usage
  • Citations to this article (38)

Go to

  • Top
  • Abstract
  • Version history
Advertisement
Advertisement

Copyright © 2025 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts