Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
  • Clinical Research and Public Health
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Video Abstracts
  • Reviews
    • View all reviews ...
    • Complement Biology and Therapeutics (May 2025)
    • Evolving insights into MASLD and MASH pathogenesis and treatment (Apr 2025)
    • Microbiome in Health and Disease (Feb 2025)
    • Substance Use Disorders (Oct 2024)
    • Clonal Hematopoiesis (Oct 2024)
    • Sex Differences in Medicine (Sep 2024)
    • Vascular Malformations (Apr 2024)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Clinical Research and Public Health
    • Research Letters
    • Letters to the Editor
    • Editorials
    • Commentaries
    • Editor's notes
    • Reviews
    • Viewpoints
    • 100th anniversary
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Video Abstracts
  • In-Press Preview
  • Clinical Research and Public Health
  • Research Letters
  • Letters to the Editor
  • Editorials
  • Commentaries
  • Editor's notes
  • Reviews
  • Viewpoints
  • 100th anniversary
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
Top
  • View PDF
  • Download citation information
  • Send a comment
  • Terms of use
  • Standard abbreviations
  • Need help? Email the journal
  • Top
  • Abstract
  • Version history
  • Article usage
  • Citations to this article

Advertisement

Research Article Free access | 10.1172/JCI115361

Glycolytic inhibition and calcium overload as consequences of exogenously generated free radicals in rabbit hearts.

M C Corretti, Y Koretsune, H Kusuoka, V P Chacko, J L Zweier, and E Marban

Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205.

Find articles by Corretti, M. in: PubMed | Google Scholar

Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205.

Find articles by Koretsune, Y. in: PubMed | Google Scholar

Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205.

Find articles by Kusuoka, H. in: PubMed | Google Scholar

Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205.

Find articles by Chacko, V. in: PubMed | Google Scholar

Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205.

Find articles by Zweier, J. in: PubMed | Google Scholar

Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205.

Find articles by Marban, E. in: PubMed | Google Scholar

Published September 1, 1991 - More info

Published in Volume 88, Issue 3 on September 1, 1991
J Clin Invest. 1991;88(3):1014–1025. https://doi.org/10.1172/JCI115361.
© 1991 The American Society for Clinical Investigation
Published September 1, 1991 - Version history
View PDF
Abstract

Free radicals have been implicated in the pathogenesis of reperfusion injury, but it is unclear how they exert their deleterious effects on cellular metabolism. Several lines of indirect evidence suggest that free radicals elevate intracellular Ca2+ concentration ([Ca2+]i) and inhibit glycolysis as part of their mechanism of injury. We tested these ideas directly in hearts subjected to hydroxyl radicals produced by the Fenton and Haber-Weiss reactions. Nuclear magnetic resonance spectra were obtained from Langendorff-perfused rabbit hearts before, during, and after 4 min of perfusion with H2O2 (0.75 mM) and Fe(3+)-chelate (0.1 mM). Isovolumic left ventricular pressure exhibited progressive functional deterioration and contracture after exposure to H2O2 + Fe3+. Phosphorus nuclear magnetic resonance (NMR) spectra revealed partial ATP depletion and sugar phosphate accumulation indicative of glycolytic inhibition. To measure [Ca2+]i, fluorine NMR spectra were acquired in a separate group of hearts loaded with the Ca2+ indicator 5F-BAPTA [5,5'-difluoro derivative of 1,2-bis-(o-aminophenoxy)ethane- N,N,N',N'-tetraacetic acid]. Mean time-averaged [Ca2+]i increased from 347 +/- 14 nM in control to 1,026 +/- 295 nM 4 min after free radical generation (means +/- SEM, n = 7), and remained elevated thereafter. We conclude that free radicals induce clear-cut, specific derangements of cellular metabolism in the form of glycolytic inhibition and calcium overload. The observed increase in [Ca2+]i suggests that the deleterious effects of free radicals are at least partially mediated by secondary changes in cellular calcium homeostasis.

Browse pages

Click on an image below to see the page. View PDF of the complete article

icon of scanned page 1014
page 1014
icon of scanned page 1015
page 1015
icon of scanned page 1016
page 1016
icon of scanned page 1017
page 1017
icon of scanned page 1018
page 1018
icon of scanned page 1019
page 1019
icon of scanned page 1020
page 1020
icon of scanned page 1021
page 1021
icon of scanned page 1022
page 1022
icon of scanned page 1023
page 1023
icon of scanned page 1024
page 1024
icon of scanned page 1025
page 1025
Version history
  • Version 1 (September 1, 1991): No description

Article tools

  • View PDF
  • Download citation information
  • Send a comment
  • Terms of use
  • Standard abbreviations
  • Need help? Email the journal

Metrics

  • Article usage
  • Citations to this article

Go to

  • Top
  • Abstract
  • Version history
Advertisement
Advertisement

Copyright © 2025 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts