Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
  • Clinical Research and Public Health
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Video Abstracts
  • Reviews
    • View all reviews ...
    • Complement Biology and Therapeutics (May 2025)
    • Evolving insights into MASLD and MASH pathogenesis and treatment (Apr 2025)
    • Microbiome in Health and Disease (Feb 2025)
    • Substance Use Disorders (Oct 2024)
    • Clonal Hematopoiesis (Oct 2024)
    • Sex Differences in Medicine (Sep 2024)
    • Vascular Malformations (Apr 2024)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Clinical Research and Public Health
    • Research Letters
    • Letters to the Editor
    • Editorials
    • Commentaries
    • Editor's notes
    • Reviews
    • Viewpoints
    • 100th anniversary
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Video Abstracts
  • In-Press Preview
  • Clinical Research and Public Health
  • Research Letters
  • Letters to the Editor
  • Editorials
  • Commentaries
  • Editor's notes
  • Reviews
  • Viewpoints
  • 100th anniversary
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
Top
  • View PDF
  • Download citation information
  • Send a comment
  • Terms of use
  • Standard abbreviations
  • Need help? Email the journal
  • Top
  • Abstract
  • Version history
  • Article usage
  • Citations to this article (205)

Advertisement

Research Article Free access | 10.1172/JCI115316

Role of nitric oxide in renal medullary oxygenation. Studies in isolated and intact rat kidneys.

M Brezis, S N Heyman, D Dinour, F H Epstein, and S Rosen

Department of Medicine, Hadassah University Hospital, Mount Scopus, Jerusalem, Israel.

Find articles by Brezis, M. in: PubMed | Google Scholar

Department of Medicine, Hadassah University Hospital, Mount Scopus, Jerusalem, Israel.

Find articles by Heyman, S. in: PubMed | Google Scholar

Department of Medicine, Hadassah University Hospital, Mount Scopus, Jerusalem, Israel.

Find articles by Dinour, D. in: PubMed | Google Scholar

Department of Medicine, Hadassah University Hospital, Mount Scopus, Jerusalem, Israel.

Find articles by Epstein, F. in: PubMed | Google Scholar

Department of Medicine, Hadassah University Hospital, Mount Scopus, Jerusalem, Israel.

Find articles by Rosen, S. in: PubMed | Google Scholar

Published August 1, 1991 - More info

Published in Volume 88, Issue 2 on August 1, 1991
J Clin Invest. 1991;88(2):390–395. https://doi.org/10.1172/JCI115316.
© 1991 The American Society for Clinical Investigation
Published August 1, 1991 - Version history
View PDF
Abstract

We investigated the role of the endothelial-derived relaxing factor nitric oxide (NO) in the homeostasis of O2 supply to the renal medulla, a region normally operating on the verge of hypoxia. Sensitive Clark-type O2 microelectrodes were inserted into renal cortex and medulla of anesthetized rats. The inhibitor of NO formation, L-NG-monomethylarginine (LNMMA), while increasing blood pressure and reducing renal blood flow, decreased medullary pO2 from 23 +/- 3 mmHg to 12 +/- 3 (P less than 0.001), with no change in the cortex. These responses were promptly reversed by L-arginine, which bypasses the LNMMA blockade. In isolated rat kidneys, LNMMA reduced perfusion flow without altering glomerular filtration rate, and augmented deep medullary hypoxic injury to thick ascending limbs from 68 to 90% of the tubules (P less than 0.02). These changes were prevented by L-arginine. Nitroprusside had a protective effect upon thick limb injury. Finally, in a previously reported model of radiocontrast nephropathy (1988. J. Clin. Invest. 82:401), LNMMA increased the severity of renal failure (final plasma creatinine from 2.3 +/- 2 mg% to 3.4 +/- 3, P less than 0.005) and the proportion of damaged thick limbs (from 24 +/- 6% to 53 +/- 9, P less than 0.01). Nitrovasodilatation may participate in the balance of renal medullary oxygenation and play an important role in the prevention of medullary hypoxic injury.

Browse pages

Click on an image below to see the page. View PDF of the complete article

icon of scanned page 390
page 390
icon of scanned page 391
page 391
icon of scanned page 392
page 392
icon of scanned page 393
page 393
icon of scanned page 394
page 394
icon of scanned page 395
page 395
Version history
  • Version 1 (August 1, 1991): No description

Article tools

  • View PDF
  • Download citation information
  • Send a comment
  • Terms of use
  • Standard abbreviations
  • Need help? Email the journal

Metrics

  • Article usage
  • Citations to this article (205)

Go to

  • Top
  • Abstract
  • Version history
Advertisement
Advertisement

Copyright © 2025 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts