Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
  • Clinical Research and Public Health
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Video Abstracts
  • Reviews
    • View all reviews ...
    • Complement Biology and Therapeutics (May 2025)
    • Evolving insights into MASLD and MASH pathogenesis and treatment (Apr 2025)
    • Microbiome in Health and Disease (Feb 2025)
    • Substance Use Disorders (Oct 2024)
    • Clonal Hematopoiesis (Oct 2024)
    • Sex Differences in Medicine (Sep 2024)
    • Vascular Malformations (Apr 2024)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Clinical Research and Public Health
    • Research Letters
    • Letters to the Editor
    • Editorials
    • Commentaries
    • Editor's notes
    • Reviews
    • Viewpoints
    • 100th anniversary
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Video Abstracts
  • In-Press Preview
  • Clinical Research and Public Health
  • Research Letters
  • Letters to the Editor
  • Editorials
  • Commentaries
  • Editor's notes
  • Reviews
  • Viewpoints
  • 100th anniversary
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
Top
  • View PDF
  • Download citation information
  • Send a comment
  • Terms of use
  • Standard abbreviations
  • Need help? Email the journal
  • Top
  • Abstract
  • Version history
Article has an altmetric score of 2

See more details

Posted by 1 X users
On 2 videos
51 readers on Mendeley
  • Article usage
  • Citations to this article (192)

Advertisement

Research Article Free access | 10.1172/JCI115292

Study of brain electrolytes and organic osmolytes during correction of chronic hyponatremia. Implications for the pathogenesis of central pontine myelinolysis.

Y H Lien, J I Shapiro, and L Chan

Department of Medicine, University of Colorado Health Sciences Center, Denver 80262.

Find articles by Lien, Y. in: PubMed | Google Scholar

Department of Medicine, University of Colorado Health Sciences Center, Denver 80262.

Find articles by Shapiro, J. in: PubMed | Google Scholar

Department of Medicine, University of Colorado Health Sciences Center, Denver 80262.

Find articles by Chan, L. in: PubMed | Google Scholar

Published July 1, 1991 - More info

Published in Volume 88, Issue 1 on July 1, 1991
J Clin Invest. 1991;88(1):303–309. https://doi.org/10.1172/JCI115292.
© 1991 The American Society for Clinical Investigation
Published July 1, 1991 - Version history
View PDF
Abstract

Osmotic injury induced by rapid correction of severe chronic hyponatremia has been implicated in the development of central pontine myelinolysis. Organic osmolytes known previously as "idiogenic osmoles" accumulate intracellularly to protect cells from osmotic injury. We investigated the changes of these organic osmolytes as well as electrolytes in the brain during the induction and correction of chronic hyponatremia. Using 1H-nuclear magnetic resonance spectroscopy and HPLC, we found that in rats with chronic hyponatremia (3 d, serum sodium = 109 +/- 3 meq/liter), brain concentrations of myoinositol (41%), glycerophosphorylcholine (45%), phosphocreatine/creatine (60%), glutamate (53%), glutamine (45%), and taurine (37%) were all significantly decreased compared with control values (percentage control value shown, all P less than 0.01). The contribution of measured organic osmolytes and electrolytes to the total brain osmolality change was 23 and 72%, respectively. With rapid correction by 5% NaCl infusion, significant brain dehydration and elevation of brain Na and Cl levels above the normal range occurred at 24 h. These changes were not seen with slow correction by water deprivation. Reaccumulation of most organic osmolytes except glycerophosphorylcholine is delayed during the correction of hyponatremia and is independent of the correction rate of serum sodium. It is concluded that: most of the change of brain osmolality in chronic hyponatremia can be accounted by the changes in organic osmolytes and brain electrolytes; and rapid correction of hyponatremia is associated with an overshoot of brain sodium and chloride levels along with a low organic osmolyte level. The high cerebral ion concentrations in the absence of adequate concentrations of organic osmolytes may be relevant to the development of central pontine myelinolysis.

Browse pages

Click on an image below to see the page. View PDF of the complete article

icon of scanned page 303
page 303
icon of scanned page 304
page 304
icon of scanned page 305
page 305
icon of scanned page 306
page 306
icon of scanned page 307
page 307
icon of scanned page 308
page 308
icon of scanned page 309
page 309
Version history
  • Version 1 (July 1, 1991): No description

Article tools

  • View PDF
  • Download citation information
  • Send a comment
  • Terms of use
  • Standard abbreviations
  • Need help? Email the journal

Metrics

Article has an altmetric score of 2
  • Article usage
  • Citations to this article (192)

Go to

  • Top
  • Abstract
  • Version history
Advertisement
Advertisement

Copyright © 2025 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts

Posted by 1 X users
On 2 videos
51 readers on Mendeley
See more details