Branched chain alpha-ketoacid dehydrogenase (BCKDH) deficiency results in maple syrup urine disease (MSUD). We examined the molecular basis of familial cases of MSUD by analyzing the activity, subunit structure, mRNA sequence, and genome structure of the affected enzyme. The BCKDH activity in the proband with MSUD was approximately 6% of the normal control level. Immunoblot analysis revealed that the E1 beta subunit of BCKDH was absent and that the E1 alpha subunit of BCKDH was markedly reduced. We amplified the cDNAs of the E1 alpha subunit and the E1 beta subunit of the BCKDH complex obtained from cells of the patient, using the polymerase chain reaction method, then sequenced the amplified cDNAs. The deduced amino acid sequence for the E1 alpha subunit of the patient's cell was normal. An 11-bp deletion was identified in the region that encoded the mitochondrial targeting leader peptide in the E1 beta cDNA. This 11-bp sequence is found in the first exon of the BCKDH-E1 beta gene, as a direct tandem repeat. Amplification of genomic DNA revealed that the consanguineous parents were heterozygous for this mutant allele, and sister and brother of the patient with the disease were homozygous for this mutant allele. This 11-bp deletion mutation caused a change in the reading frame and the mature E1 beta protein was defective. These observations show the biological importance of the E1 beta subunit of BCKDH to maintain normal function of the enzyme activity. The absence of the E1 beta subunit results in instability of the E1 alpha subunit.
Y Nobukuni, H Mitsubuchi, I Akaboshi, Y Indo, F Endo, A Yoshioka, I Matsuda
Usage data is cumulative from May 2024 through May 2025.
Usage | JCI | PMC |
---|---|---|
Text version | 177 | 21 |
57 | 37 | |
Figure | 0 | 1 |
Scanned page | 196 | 3 |
Citation downloads | 64 | 0 |
Totals | 494 | 62 |
Total Views | 556 |
Usage information is collected from two different sources: this site (JCI) and Pubmed Central (PMC). JCI information (compiled daily) shows human readership based on methods we employ to screen out robotic usage. PMC information (aggregated monthly) is also similarly screened of robotic usage.
Various methods are used to distinguish robotic usage. For example, Google automatically scans articles to add to its search index and identifies itself as robotic; other services might not clearly identify themselves as robotic, or they are new or unknown as robotic. Because this activity can be misinterpreted as human readership, data may be re-processed periodically to reflect an improved understanding of robotic activity. Because of these factors, readers should consider usage information illustrative but subject to change.