Androgen resistance is associated with a wide range of quantitative and qualitative defects in the androgen receptor. However, fibroblast cultures from approximately 10% of patients with the clinical, endocrine, and genetic features characteristic of androgen resistance express normal quantities of apparently normal androgen receptor in cultured genital skin fibroblasts (receptor-positive androgen resistance). We have analyzed the androgen receptor gene of one patient (P321) with receptor-positive, complete testicular feminization and detected a single nucleotide substitution at nucleotide 2006 (G----C) within the second "zinc finger" of the DNA-binding domain that results in the conversion of the arginine residue at position 615 into a proline residue. Introduction of this mutation into the androgen receptor cDNA and transfection of the expression plasmid into eukaryotic cells lead to the synthesis of a receptor protein that displays normal binding kinetics but is inactive in functional assays of receptor activity. We conclude that substitution mutations in the DNA-binding domain of the androgen receptor are one cause of "receptor-positive" androgen resistance.
M Marcelli, S Zoppi, P B Grino, J E Griffin, J D Wilson, M J McPhaul
1123 | 1124 | 1125 | 1126 |