Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
  • Clinical Research and Public Health
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Video Abstracts
  • Reviews
    • View all reviews ...
    • Complement Biology and Therapeutics (May 2025)
    • Evolving insights into MASLD and MASH pathogenesis and treatment (Apr 2025)
    • Microbiome in Health and Disease (Feb 2025)
    • Substance Use Disorders (Oct 2024)
    • Clonal Hematopoiesis (Oct 2024)
    • Sex Differences in Medicine (Sep 2024)
    • Vascular Malformations (Apr 2024)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Clinical Research and Public Health
    • Research Letters
    • Letters to the Editor
    • Editorials
    • Commentaries
    • Editor's notes
    • Reviews
    • Viewpoints
    • 100th anniversary
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Video Abstracts
  • In-Press Preview
  • Clinical Research and Public Health
  • Research Letters
  • Letters to the Editor
  • Editorials
  • Commentaries
  • Editor's notes
  • Reviews
  • Viewpoints
  • 100th anniversary
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact

Usage Information

Defective insulin response of cyclic adenosine monophosphate-dependent protein kinase in insulin-resistant humans.
Y Kida, … , C Bogardus, D M Mott
Y Kida, … , C Bogardus, D M Mott
Published February 1, 1991
Citation Information: J Clin Invest. 1991;87(2):673-679. https://doi.org/10.1172/JCI115045.
View: Text | PDF
Research Article

Defective insulin response of cyclic adenosine monophosphate-dependent protein kinase in insulin-resistant humans.

  • Text
  • PDF
Abstract

Insulin-stimulated glycogen synthase activity in human muscle correlates with insulin-mediated glucose disposal and is reduced in insulin-resistant subjects. Inhibition of the cyclic AMP-dependent protein kinase (A-kinase) is considered as a possible mechanism of insulin action for glycogen synthase activation. In this study, we investigated the time course of insulin action on human muscle A-kinase activity during a 2-h insulin infusion in 13 insulin-sensitive (group S) and 7 insulin-resistant subjects (group R). Muscle biopsies were obtained from quadriceps femoris muscle at times 0, 10, 20, 40, and 120 min. Insulin infusion resulted in significant inhibition of A-kinase activity at 20 and/or 40 min using 0.2, 0.6, and 1.0 microM cyclic AMP in group S. A-kinase activities both before and after insulin administration were lower in group S than in group R using 0.6 microM cyclic AMP. The decrease in apparent affinity for cyclic AMP during insulin infusion was larger for group S compared with group R. Glycogen synthase activity increased significantly after insulin infusion in both groups and was higher in group S compared with group R. The data suggest that a defective response of A-kinase to insulin in insulin-resistant subjects could contribute to their reduced insulin stimulation of skeletal muscle glycogen synthase.

Authors

Y Kida, B L Nyomba, C Bogardus, D M Mott

×

Usage data is cumulative from May 2024 through May 2025.

Usage JCI PMC
Text version 92 2
PDF 57 16
Scanned page 314 2
Citation downloads 61 0
Totals 524 20
Total Views 544
(Click and drag on plot area to zoom in. Click legend items above to toggle)

Usage information is collected from two different sources: this site (JCI) and Pubmed Central (PMC). JCI information (compiled daily) shows human readership based on methods we employ to screen out robotic usage. PMC information (aggregated monthly) is also similarly screened of robotic usage.

Various methods are used to distinguish robotic usage. For example, Google automatically scans articles to add to its search index and identifies itself as robotic; other services might not clearly identify themselves as robotic, or they are new or unknown as robotic. Because this activity can be misinterpreted as human readership, data may be re-processed periodically to reflect an improved understanding of robotic activity. Because of these factors, readers should consider usage information illustrative but subject to change.

Advertisement

Copyright © 2025 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts