Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
  • Clinical Research and Public Health
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Video Abstracts
  • Reviews
    • View all reviews ...
    • Complement Biology and Therapeutics (May 2025)
    • Evolving insights into MASLD and MASH pathogenesis and treatment (Apr 2025)
    • Microbiome in Health and Disease (Feb 2025)
    • Substance Use Disorders (Oct 2024)
    • Clonal Hematopoiesis (Oct 2024)
    • Sex Differences in Medicine (Sep 2024)
    • Vascular Malformations (Apr 2024)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Clinical Research and Public Health
    • Research Letters
    • Letters to the Editor
    • Editorials
    • Commentaries
    • Editor's notes
    • Reviews
    • Viewpoints
    • 100th anniversary
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Video Abstracts
  • In-Press Preview
  • Clinical Research and Public Health
  • Research Letters
  • Letters to the Editor
  • Editorials
  • Commentaries
  • Editor's notes
  • Reviews
  • Viewpoints
  • 100th anniversary
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
Top
  • View PDF
  • Download citation information
  • Send a comment
  • Terms of use
  • Standard abbreviations
  • Need help? Email the journal
  • Top
  • Abstract
  • Version history
  • Article usage
  • Citations to this article (101)

Advertisement

Research Article Free access | 10.1172/JCI115042

Insulin-like growth factor II-mediated proliferation of human neuroblastoma.

O M El-Badry, L J Helman, J Chatten, S M Steinberg, A E Evans, and M A Israel

Molecular Genetics Section, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892.

Find articles by El-Badry, O. in: PubMed | Google Scholar

Molecular Genetics Section, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892.

Find articles by Helman, L. in: PubMed | Google Scholar

Molecular Genetics Section, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892.

Find articles by Chatten, J. in: PubMed | Google Scholar

Molecular Genetics Section, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892.

Find articles by Steinberg, S. in: PubMed | Google Scholar

Molecular Genetics Section, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892.

Find articles by Evans, A. in: PubMed | Google Scholar

Molecular Genetics Section, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892.

Find articles by Israel, M. in: PubMed | Google Scholar

Published February 1, 1991 - More info

Published in Volume 87, Issue 2 on February 1, 1991
J Clin Invest. 1991;87(2):648–657. https://doi.org/10.1172/JCI115042.
© 1991 The American Society for Clinical Investigation
Published February 1, 1991 - Version history
View PDF
Abstract

Neuroblastoma is an embryonal tumor that typically arises in cells of the developing adrenal medulla. IGF-II mRNA is expressed at high levels in the adrenal cortex before birth but it is not detectable until after birth in the adrenal medulla. Neuroblastoma cell lines corresponding to early adrenal medullary precursors did not express IGF-II, although all three cell lines we tested were growth stimulated by IGF-II. Cell lines corresponding to more mature adrenal medullary cells expressed IGF-II, and one, SK-N-AS, grows by an IGF-II autocrine mechanism (J. Clin. Invest. 84:829-839) El-Badry, Romanus, Helman, Cooper, Rechler, and Israel. 1989. An examination of human neuroblastoma tumor tissues for IGF-II gene expression using in situ hybridization histochemistry revealed that IGF-II is expressed by tumor cells in only 5 of 21 neuroblastomas, but is detectable in cells of nonmalignant tissues including adrenal cortical cells, stromal fibroblasts, and eosinophils in all 21 tumors. These findings indicate that IGF-II may function as an autocrine growth factor for some neuroblastomas and as a paracrine growth factor for others. They suggest that the growth regulatory pathways utilized by neuroblastoma mimic those used in the precursor cell type from which individual tumors arise.

Images.

Browse pages

Click on an image below to see the page. View PDF of the complete article

icon of scanned page 648
page 648
icon of scanned page 649
page 649
icon of scanned page 650
page 650
icon of scanned page 651
page 651
icon of scanned page 652
page 652
icon of scanned page 653
page 653
icon of scanned page 654
page 654
icon of scanned page 655
page 655
icon of scanned page 656
page 656
icon of scanned page 657
page 657
Version history
  • Version 1 (February 1, 1991): No description

Article tools

  • View PDF
  • Download citation information
  • Send a comment
  • Terms of use
  • Standard abbreviations
  • Need help? Email the journal

Metrics

  • Article usage
  • Citations to this article (101)

Go to

  • Top
  • Abstract
  • Version history
Advertisement
Advertisement

Copyright © 2025 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts