Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
  • Clinical Research and Public Health
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Video Abstracts
  • Reviews
    • View all reviews ...
    • Complement Biology and Therapeutics (May 2025)
    • Evolving insights into MASLD and MASH pathogenesis and treatment (Apr 2025)
    • Microbiome in Health and Disease (Feb 2025)
    • Substance Use Disorders (Oct 2024)
    • Clonal Hematopoiesis (Oct 2024)
    • Sex Differences in Medicine (Sep 2024)
    • Vascular Malformations (Apr 2024)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Clinical Research and Public Health
    • Research Letters
    • Letters to the Editor
    • Editorials
    • Commentaries
    • Editor's notes
    • Reviews
    • Viewpoints
    • 100th anniversary
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Video Abstracts
  • In-Press Preview
  • Clinical Research and Public Health
  • Research Letters
  • Letters to the Editor
  • Editorials
  • Commentaries
  • Editor's notes
  • Reviews
  • Viewpoints
  • 100th anniversary
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact

Usage Information

Chemotactic factors regulate lectin adhesion molecule 1 (LECAM-1)-dependent neutrophil adhesion to cytokine-stimulated endothelial cells in vitro.
C W Smith, … , D C Anderson, O Abbass
C W Smith, … , D C Anderson, O Abbass
Published February 1, 1991
Citation Information: J Clin Invest. 1991;87(2):609-618. https://doi.org/10.1172/JCI115037.
View: Text | PDF | Correction
Research Article Article has an altmetric score of 3

Chemotactic factors regulate lectin adhesion molecule 1 (LECAM-1)-dependent neutrophil adhesion to cytokine-stimulated endothelial cells in vitro.

  • Text
  • PDF
Abstract

Monoclonal antibodies recognizing CD18, CD11a, CD11b, and neutrophil lectin adhesion molecule 1 (LECAM-1), i.e., the human homologue of the murine MEL-14 antigen, were used to assess the relative contribution of these glycoproteins to neutrophil-endothelial adhesion. Under static conditions, the adhesion of neutrophils to IL-1-stimulated human umbilical vein endothelial cell (HUVEC) monolayers was inhibited by antibodies to CD18, CD11a, and the neutrophil LECAM-1, and the effect of combining anti-LECAM-1 and anti-CD11a was almost additive. Under flow at a wall shear stress 1.85 dyn/cm2, a condition where CD18-dependent adhesion is minimal, anti-LECAM-1 inhibited adhesion by greater than 50%. Chemotactic stimulation of neutrophils induced a rapid loss of LECAM-1 from the neutrophil surface, and the level of neutrophil surface LECAM-1 was closely correlated with adhesion under flow. Neutrophils contacting the activated endothelial cells for 30 min lost much of their surface LECAM-1, a phenomenon induced by a soluble factor or factors released into the medium by the stimulated monolayers, and a high percentage migrated through the HUVEC monolayer. This migration was almost completely inhibited by anti-CD18, but was unaffected by antibodies to neutrophil LECAM-1. These results support the concept that LECAM-1 is a neutrophil adhesion molecule that participates in the adherence of unstimulated neutrophils to cytokine-stimulated endothelial cells under conditions of flow, and is then lost from the neutrophil surface coincident with the engagement of CD18-dependent mechanisms leading to transendothelial migration.

Authors

C W Smith, T K Kishimoto, O Abbassi, B Hughes, R Rothlein, L V McIntire, E Butcher, D C Anderson, O Abbass

×

Usage data is cumulative from June 2024 through June 2025.

Usage JCI PMC
Text version 409 3
PDF 101 23
Scanned page 447 4
Citation downloads 73 0
Totals 1,030 30
Total Views 1,060
(Click and drag on plot area to zoom in. Click legend items above to toggle)

Usage information is collected from two different sources: this site (JCI) and Pubmed Central (PMC). JCI information (compiled daily) shows human readership based on methods we employ to screen out robotic usage. PMC information (aggregated monthly) is also similarly screened of robotic usage.

Various methods are used to distinguish robotic usage. For example, Google automatically scans articles to add to its search index and identifies itself as robotic; other services might not clearly identify themselves as robotic, or they are new or unknown as robotic. Because this activity can be misinterpreted as human readership, data may be re-processed periodically to reflect an improved understanding of robotic activity. Because of these factors, readers should consider usage information illustrative but subject to change.

Advertisement

Copyright © 2025 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts

Referenced in 12 patents
22 readers on Mendeley
See more details