Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
  • Clinical Research and Public Health
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Video Abstracts
  • Reviews
    • View all reviews ...
    • Complement Biology and Therapeutics (May 2025)
    • Evolving insights into MASLD and MASH pathogenesis and treatment (Apr 2025)
    • Microbiome in Health and Disease (Feb 2025)
    • Substance Use Disorders (Oct 2024)
    • Clonal Hematopoiesis (Oct 2024)
    • Sex Differences in Medicine (Sep 2024)
    • Vascular Malformations (Apr 2024)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Clinical Research and Public Health
    • Research Letters
    • Letters to the Editor
    • Editorials
    • Commentaries
    • Editor's notes
    • Reviews
    • Viewpoints
    • 100th anniversary
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Video Abstracts
  • In-Press Preview
  • Clinical Research and Public Health
  • Research Letters
  • Letters to the Editor
  • Editorials
  • Commentaries
  • Editor's notes
  • Reviews
  • Viewpoints
  • 100th anniversary
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
Top
  • View PDF
  • Download citation information
  • Send a comment
  • Terms of use
  • Standard abbreviations
  • Need help? Email the journal
  • Top
  • Abstract
  • Version history
  • Article usage
  • Citations to this article (75)

Advertisement

Research Article Free access | 10.1172/JCI115033

Role of increased cytosolic free calcium in the pathogenesis of rabbit proximal tubule cell injury and protection by glycine or acidosis.

J M Weinberg, J A Davis, N F Roeser, and M A Venkatachalam

Department of Internal Medicine, University of Michigan, Ann Arbor 48109.

Find articles by Weinberg, J. in: PubMed | Google Scholar

Department of Internal Medicine, University of Michigan, Ann Arbor 48109.

Find articles by Davis, J. in: PubMed | Google Scholar

Department of Internal Medicine, University of Michigan, Ann Arbor 48109.

Find articles by Roeser, N. in: PubMed | Google Scholar

Department of Internal Medicine, University of Michigan, Ann Arbor 48109.

Find articles by Venkatachalam, M. in: PubMed | Google Scholar

Published February 1, 1991 - More info

Published in Volume 87, Issue 2 on February 1, 1991
J Clin Invest. 1991;87(2):581–590. https://doi.org/10.1172/JCI115033.
© 1991 The American Society for Clinical Investigation
Published February 1, 1991 - Version history
View PDF
Abstract

To assess the role of increased cytosolic free calcium (Caf) in the pathogenesis of acute proximal tubule cell injury and the protection afforded by exposure to reduced medium pH or treatment with glycine, fura-2-loaded tubules were studied in suspension and singly in a superfusion system. The Ca2+ ionophore, ionomycin, increased Caf to micromolar levels and rapidly produced lethal cell injury as indicated by loss of lactate dehydrogenase to the medium by suspended tubules and accelerated leak of fura and failure to exclude Trypan blue by superfused tubules. Decreasing medium Ca2+ to 100 nM prevented the ionomycin-induced increases of Caf and the injury. Reducing medium pH from 7.4 to 6.9 or adding 2 mM glycine to the medium also prevented the cell death, but did not prevent the increase of Caf to micromolar levels. Cells treated with 1799, an uncoupler of oxidative phosphorylation which produced severe adenosine triphosphate (ATP) depletion, did not develop increases of Caf until just before loss of viability. Preventing these increases of Caf with 100 nM Ca2+ medium did not protect 1799-treated cells. Reduced pH and glycine protected 1799-treated cells without ameliorating the increases of Caf. These data demonstrate the toxic potential of increased Caf in the proximal tubule and show that Caf does sharply increase prior to loss of viability in an ATP depletion model of injury, but this increase does not necessarily contribute to the outcome. The potent protective actions of decreased pH and glycine allow the cells to sustain increases of Caf to micromolar levels in spite of severe, accompanying cellular ATP depletion without developing lethal cell injury.

Browse pages

Click on an image below to see the page. View PDF of the complete article

icon of scanned page 581
page 581
icon of scanned page 582
page 582
icon of scanned page 583
page 583
icon of scanned page 584
page 584
icon of scanned page 585
page 585
icon of scanned page 586
page 586
icon of scanned page 587
page 587
icon of scanned page 588
page 588
icon of scanned page 589
page 589
icon of scanned page 590
page 590
Version history
  • Version 1 (February 1, 1991): No description

Article tools

  • View PDF
  • Download citation information
  • Send a comment
  • Terms of use
  • Standard abbreviations
  • Need help? Email the journal

Metrics

  • Article usage
  • Citations to this article (75)

Go to

  • Top
  • Abstract
  • Version history
Advertisement
Advertisement

Copyright © 2025 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts