Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
  • Clinical Research and Public Health
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Video Abstracts
  • Reviews
    • View all reviews ...
    • Complement Biology and Therapeutics (May 2025)
    • Evolving insights into MASLD and MASH pathogenesis and treatment (Apr 2025)
    • Microbiome in Health and Disease (Feb 2025)
    • Substance Use Disorders (Oct 2024)
    • Clonal Hematopoiesis (Oct 2024)
    • Sex Differences in Medicine (Sep 2024)
    • Vascular Malformations (Apr 2024)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Clinical Research and Public Health
    • Research Letters
    • Letters to the Editor
    • Editorials
    • Commentaries
    • Editor's notes
    • Reviews
    • Viewpoints
    • 100th anniversary
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Video Abstracts
  • In-Press Preview
  • Clinical Research and Public Health
  • Research Letters
  • Letters to the Editor
  • Editorials
  • Commentaries
  • Editor's notes
  • Reviews
  • Viewpoints
  • 100th anniversary
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
Top
  • View PDF
  • Download citation information
  • Send a comment
  • Terms of use
  • Standard abbreviations
  • Need help? Email the journal
  • Top
  • Abstract
  • Version history
Article has an altmetric score of 6

See more details

Referenced in 1 policy sources
Referenced in 2 patents
14 readers on Mendeley
  • Article usage
  • Citations to this article

Advertisement

Research Article Free access | 10.1172/JCI115024

Human immunodeficiency virus-infected macrophages produce soluble factors that cause histological and neurochemical alterations in cultured human brains.

L Pulliam, B G Herndier, N M Tang, and M S McGrath

Department of Laboratory Medicine, San Francisco Veterans Administration Medical Center, California 94121.

Find articles by Pulliam, L. in: JCI | PubMed | Google Scholar

Department of Laboratory Medicine, San Francisco Veterans Administration Medical Center, California 94121.

Find articles by Herndier, B. in: JCI | PubMed | Google Scholar

Department of Laboratory Medicine, San Francisco Veterans Administration Medical Center, California 94121.

Find articles by Tang, N. in: JCI | PubMed | Google Scholar

Department of Laboratory Medicine, San Francisco Veterans Administration Medical Center, California 94121.

Find articles by McGrath, M. in: JCI | PubMed | Google Scholar

Published February 1, 1991 - More info

Published in Volume 87, Issue 2 on February 1, 1991
J Clin Invest. 1991;87(2):503–512. https://doi.org/10.1172/JCI115024.
© 1991 The American Society for Clinical Investigation
Published February 1, 1991 - Version history
View PDF
Abstract

We wanted to establish an in vitro human model for AIDS-associated dementia and pursue the hypothesis that this disease process may be a result of soluble factors produced by HIV-infected macrophages. Human brain aggregates were prepared from nine different brain specimens, and were treated with supernatants from in vitro HIV-infected macrophages (SI), uninfected macrophages (SU), infected T cells, or macrophage-conditioned media from four AIDS patients. Seven of nine treated brains exposed to SI showed peripheral rarefaction after 1 wk of incubation that by ultrastructural analysis showed cytoplasmic vacuolation. Aggregates from two of three brain cultures treated with SI for 3 wk became smaller, an approximately 50% decrease in size. The degree of apparent toxicity in brains exposed to patient-derived macrophage supernatants paralleled the proportion of macrophages found to be expressing HIV p24. Ultrastructural abnormalities were not observed in brains treated with supernatants from HIV-infected T cells, uninfected macrophages, or LPS-activated macrophages. Levels of five neurotransmitter amino acids were decreased in comparison to the structural amino acid leucine. These findings suggest that HIV-infected macrophages, infected both in vitro as well as derived from AIDS patients' peripheral blood, produce factors that cause reproducible histochemical, ultrastructural, and functional abnormalities in human brain aggregates.

Images.

Browse pages

Click on an image below to see the page. View PDF of the complete article

icon of scanned page 503
page 503
icon of scanned page 504
page 504
icon of scanned page 505
page 505
icon of scanned page 506
page 506
icon of scanned page 507
page 507
icon of scanned page 508
page 508
icon of scanned page 509
page 509
icon of scanned page 510
page 510
icon of scanned page 511
page 511
icon of scanned page 512
page 512
Version history
  • Version 1 (February 1, 1991): No description

Article tools

  • View PDF
  • Download citation information
  • Send a comment
  • Terms of use
  • Standard abbreviations
  • Need help? Email the journal

Metrics

Article has an altmetric score of 6
  • Article usage
  • Citations to this article

Go to

  • Top
  • Abstract
  • Version history
Advertisement
Advertisement

Copyright © 2025 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts

Referenced in 1 policy sources
Referenced in 2 patents
14 readers on Mendeley
See more details