The mechanisms by which T lymphocytes acquire the capacity to produce interleukin 4 (IL-4) and other lymphokines during intrathymic and extrathymic development are poorly understood. To gain insight into this process, we determined the capacity of human neonatal and adult T lineage cell populations to produce IL-4 after polyclonal activation. IL-2 and interferon-gamma (IFN-gamma) production were studied in parallel, since their production by neonatal T cells is known to be similar or diminished, respectively, compared to adult T cells. Production of IL-4 by neonatal CD4+ T cells and IFN-gamma by neonatal CD4+ and CD8+ T cells was markedly lower compared with analogous adult cell populations, whereas IL-2 production was similar. Transcription of IL-4, as determined by nuclear run-on assays, and IL-4 mRNA-containing cells, as determined by in situ hybridization, were undetectable in neonatal T cells, whereas both were detectable in adult T cells. IFN-gamma transcription and IFN-gamma mRNA-containing cells were reduced in neonatal T cells compared with adult T cells. Reduced lymphokine production by neonatal T cells correlated with their lack of a CD45R- (putative memory T cell) population; cells with this surface phenotype comprised 30-40% of the adult CD4+ T cells and were highly enriched for IL-4 and IFN-gamma, but not IL-2 production. IL-4, IFN-gamma, and IL-2 mRNA expression by neonatal CD4+CD8- thymocytes was similar to that found in circulating neonatal CD4+ T cells. Taken together, these findings suggest that the extrathymic generation of memory T cells during postnatal life may result in an increased capacity for IL-4 and IFN-gamma gene expression. In addition, IFN-gamma and IL-2 mRNA were significantly more abundant than IL-4 mRNA in activated neonatal CD4+CD8- thymocytes and CD4+ T cells, as well as adult CD4+ CD45R- T cells. Therefore, the capacity of T lineage cells to express the IL-4 gene may be more restricted compared to other lymphokine genes beginning in intrathymic development. This restricted capacity appears to persist during postnatal extrathymic maturation of T cells.
D B Lewis, C C Yu, J Meyer, B K English, S J Kahn, C B Wilson
Usage data is cumulative from January 2024 through January 2025.
Usage | JCI | PMC |
---|---|---|
Text version | 170 | 0 |
59 | 25 | |
Figure | 0 | 11 |
Scanned page | 281 | 8 |
Citation downloads | 39 | 0 |
Totals | 549 | 44 |
Total Views | 593 |
Usage information is collected from two different sources: this site (JCI) and Pubmed Central (PMC). JCI information (compiled daily) shows human readership based on methods we employ to screen out robotic usage. PMC information (aggregated monthly) is also similarly screened of robotic usage.
Various methods are used to distinguish robotic usage. For example, Google automatically scans articles to add to its search index and identifies itself as robotic; other services might not clearly identify themselves as robotic, or they are new or unknown as robotic. Because this activity can be misinterpreted as human readership, data may be re-processed periodically to reflect an improved understanding of robotic activity. Because of these factors, readers should consider usage information illustrative but subject to change.