Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
  • Clinical Research and Public Health
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Video Abstracts
  • Reviews
    • View all reviews ...
    • Complement Biology and Therapeutics (May 2025)
    • Evolving insights into MASLD and MASH pathogenesis and treatment (Apr 2025)
    • Microbiome in Health and Disease (Feb 2025)
    • Substance Use Disorders (Oct 2024)
    • Clonal Hematopoiesis (Oct 2024)
    • Sex Differences in Medicine (Sep 2024)
    • Vascular Malformations (Apr 2024)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Clinical Research and Public Health
    • Research Letters
    • Letters to the Editor
    • Editorials
    • Commentaries
    • Editor's notes
    • Reviews
    • Viewpoints
    • 100th anniversary
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Video Abstracts
  • In-Press Preview
  • Clinical Research and Public Health
  • Research Letters
  • Letters to the Editor
  • Editorials
  • Commentaries
  • Editor's notes
  • Reviews
  • Viewpoints
  • 100th anniversary
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact

Usage Information

Loss of endothelium-dependent relaxant activity in the pulmonary circulation of rats exposed to chronic hypoxia.
S Adnot, … , P Braquet, P E Chabrier
S Adnot, … , P Braquet, P E Chabrier
Published January 1, 1991
Citation Information: J Clin Invest. 1991;87(1):155-162. https://doi.org/10.1172/JCI114965.
View: Text | PDF
Research Article Article has an altmetric score of 3

Loss of endothelium-dependent relaxant activity in the pulmonary circulation of rats exposed to chronic hypoxia.

  • Text
  • PDF
Abstract

To determine whether exposure to chronic hypoxia and subsequent development of pulmonary hypertension induces alterations of endothelium-dependent relaxation in rat pulmonary vascular bed, we studied isolated lung preparations from rats exposed to either room air (controls) or hypoxia (H) during 1 wk (1W-H), 3 wk (3W-H), or 3W-H followed by 48 h recovery to room air (3WH + R). In lungs pretreated with meclofenamate (3 microM), the endothelium-dependent vasodilator responses to acetylcholine (10(-9)-10(-6) M) and ionophore A23187 (10(-9)-10(-7) M) were examined during conditions of increased tone by U46619 (50 pmol/min). Acetylcholine or A23187 produced dose-dependent vasodilation in control lungs, this response was reduced in group 1W-H (P less than 0.02), abolished in group 3W-H (P less than 0.001), and restored in group 3WH + R. In contrast, the endothelium-independent vasodilator agent sodium nitroprusside remained fully active in group 3W-H. The pressor response to 300 pM endothelin was greater in group 3W-H than in controls (6.8 +/- 0.5 mmHg vs. 1.6 +/- 0.2 mmHg, P less than 0.001) but was not potentiated by the endothelium-dependent relaxing factor (EDRF) antagonists: hydroquinone (10(-4) M); methylene blue (10(-4) M); and pyrogallol (3 x 10(-5) M) as it was in controls. It was similar to controls in group 3W-H + R. Our results demonstrate that hypoxia-induced pulmonary hypertension is associated with a loss of EDRF activity in pulmonary vessels, with a rapid recovery on return to a normoxic environment.

Authors

S Adnot, B Raffestin, S Eddahibi, P Braquet, P E Chabrier

×

Usage data is cumulative from June 2024 through June 2025.

Usage JCI PMC
Text version 151 3
PDF 53 11
Figure 0 1
Scanned page 277 1
Citation downloads 63 0
Totals 544 16
Total Views 560
(Click and drag on plot area to zoom in. Click legend items above to toggle)

Usage information is collected from two different sources: this site (JCI) and Pubmed Central (PMC). JCI information (compiled daily) shows human readership based on methods we employ to screen out robotic usage. PMC information (aggregated monthly) is also similarly screened of robotic usage.

Various methods are used to distinguish robotic usage. For example, Google automatically scans articles to add to its search index and identifies itself as robotic; other services might not clearly identify themselves as robotic, or they are new or unknown as robotic. Because this activity can be misinterpreted as human readership, data may be re-processed periodically to reflect an improved understanding of robotic activity. Because of these factors, readers should consider usage information illustrative but subject to change.

Advertisement

Copyright © 2025 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts

Referenced in 3 patents
13 readers on Mendeley
See more details