This study examines the hypothesis that mediators from lung endothelial cells could promote lung collagen synthesis in pulmonary fibrosis. Since bleomycin induces pulmonary fibrosis in humans and animals, the effects of this drug on endothelial cells were examined. Endothelial cell conditioned media were prepared in the presence of various doses of bleomycin, and tested for their ability to stimulate lung fibroblast collagen synthesis. The results show a dose-dependent stimulation of endothelial cell secretion of collagen synthesis stimulatory activity by bleomycin, which peaked at a dose greater than or equal to 100 ng/ml. Stimulation was selective for collagenous protein synthesis. Gel filtration analysis showed most of the activity to reside in fractions with an estimated molecular mass range of 10-27 kD. The activity was inhibited by anti-transforming growth factor-beta (TGF-beta)antibody, but not by nonimmune control IgG. The presence of TGF-beta was confirmed using the mink lung epithelial cell assay. Northern blotting revealed significant increases in TGF-beta mRNA in bleomycin-stimulated endothelial cells. Thus in vitro stimulation of endothelial cells by bleomycin upregulates TGF-beta production, presumably by increased transcription. In view of the chemotactic and matrix synthesis stimulatory properties of this cytokine, such an increase in TGF-beta production may play an important role in bleomycin-induced pulmonary fibrosis.
S H Phan, M Gharaee-Kermani, F Wolber, U S Ryan
Usage data is cumulative from April 2024 through April 2025.
Usage | JCI | PMC |
---|---|---|
Text version | 181 | 5 |
64 | 17 | |
Figure | 0 | 1 |
Scanned page | 285 | 31 |
Citation downloads | 66 | 0 |
Totals | 596 | 54 |
Total Views | 650 |
Usage information is collected from two different sources: this site (JCI) and Pubmed Central (PMC). JCI information (compiled daily) shows human readership based on methods we employ to screen out robotic usage. PMC information (aggregated monthly) is also similarly screened of robotic usage.
Various methods are used to distinguish robotic usage. For example, Google automatically scans articles to add to its search index and identifies itself as robotic; other services might not clearly identify themselves as robotic, or they are new or unknown as robotic. Because this activity can be misinterpreted as human readership, data may be re-processed periodically to reflect an improved understanding of robotic activity. Because of these factors, readers should consider usage information illustrative but subject to change.