Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
  • Clinical Research and Public Health
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Video Abstracts
  • Reviews
    • View all reviews ...
    • Complement Biology and Therapeutics (May 2025)
    • Evolving insights into MASLD and MASH pathogenesis and treatment (Apr 2025)
    • Microbiome in Health and Disease (Feb 2025)
    • Substance Use Disorders (Oct 2024)
    • Clonal Hematopoiesis (Oct 2024)
    • Sex Differences in Medicine (Sep 2024)
    • Vascular Malformations (Apr 2024)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Clinical Research and Public Health
    • Research Letters
    • Letters to the Editor
    • Editorials
    • Commentaries
    • Editor's notes
    • Reviews
    • Viewpoints
    • 100th anniversary
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Video Abstracts
  • In-Press Preview
  • Clinical Research and Public Health
  • Research Letters
  • Letters to the Editor
  • Editorials
  • Commentaries
  • Editor's notes
  • Reviews
  • Viewpoints
  • 100th anniversary
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
Top
  • View PDF
  • Download citation information
  • Send a comment
  • Terms of use
  • Standard abbreviations
  • Need help? Email the journal
  • Top
  • Abstract
  • Version history
  • Article usage
  • Citations to this article

Advertisement

Research Article Free access | 10.1172/JCI114958

A mathematical model of the volume, pH, and ion content regulation in reticulocytes. Application to the pathophysiology of sickle cell dehydration.

V L Lew, C J Freeman, O E Ortiz, and R M Bookchin

Physiological Laboratory, Cambridge University, United Kingdom.

Find articles by Lew, V. in: PubMed | Google Scholar

Physiological Laboratory, Cambridge University, United Kingdom.

Find articles by Freeman, C. in: PubMed | Google Scholar

Physiological Laboratory, Cambridge University, United Kingdom.

Find articles by Ortiz, O. in: PubMed | Google Scholar

Physiological Laboratory, Cambridge University, United Kingdom.

Find articles by Bookchin, R. in: PubMed | Google Scholar

Published January 1, 1991 - More info

Published in Volume 87, Issue 1 on January 1, 1991
J Clin Invest. 1991;87(1):100–112. https://doi.org/10.1172/JCI114958.
© 1991 The American Society for Clinical Investigation
Published January 1, 1991 - Version history
View PDF
Abstract

We developed a mathematical model of the reticulocyte, seeking to explain how a cell with similar volume but much higher ionic traffic than the mature red cell (RBC) regulates its volume, pH, and ion content in physiological and abnormal conditions. Analysis of the fluxbalance required by reticulocytes to conserve volume and composition predicted the existence of previously unsuspected Na(+)-dependent Cl- entry mechanisms. Unlike mature RBCs, reticulocytes did not tend to return to their original state after brief perturbations. The model predicted hysteresis and drift in cell pH, volume, and ion contents after transient alterations in membrane permeability or medium composition; irreversible cell dehydration could thus occur by brief K+ permeabilization, transient medium acidification, or the replacement of external Na+ with an impermeant cation. Both the hysteresis and drift after perturbations were shown to depend on the pHi dependence of the K:Cl cotransport, a major reticulocyte transporter. This behavior suggested a novel mechanism for the generation of irreversibly sickled cells directly from reticulocytes, rather than in a stepwise, progressive manner from discocytes. Experimental tests of the model's predictions and the hypothesis are described in the following paper.

Browse pages

Click on an image below to see the page. View PDF of the complete article

icon of scanned page 100
page 100
icon of scanned page 101
page 101
icon of scanned page 102
page 102
icon of scanned page 103
page 103
icon of scanned page 104
page 104
icon of scanned page 105
page 105
icon of scanned page 106
page 106
icon of scanned page 107
page 107
icon of scanned page 108
page 108
icon of scanned page 109
page 109
icon of scanned page 110
page 110
icon of scanned page 111
page 111
icon of scanned page 112
page 112
Version history
  • Version 1 (January 1, 1991): No description

Article tools

  • View PDF
  • Download citation information
  • Send a comment
  • Terms of use
  • Standard abbreviations
  • Need help? Email the journal

Metrics

  • Article usage
  • Citations to this article

Go to

  • Top
  • Abstract
  • Version history
Advertisement
Advertisement

Copyright © 2025 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts