To investigate the hypothesis that iron absorption in man involves a carrier-mediated cellular uptake mechanism, influx velocity (Vo) of 59Fe3+ by isolated human microvillous membrane (MVM) vesicles of the upper small intestine was examined. Vo revealed saturation kinetics (Km = 315 nM; Vmax = 361 pmol Fe3+ x min-1 x mg protein-1) was temperature dependent and inhibited by pronase pretreatment of MVM. In the presence of an inwardly directed Na(+)-gradient a typical overshoot phenomenon with maximal uptake at 30-40 s was observed. The suggestion of an active, carrier-mediated uptake mechanism for iron was pursued by isolation of a 160-kD iron-binding protein from solubilized human MVM proteins. This glycoprotein was assembled as a trimer composed of 54-kD monomers. A monospecific antibody against the 54-kD subunit inhibited vesicular influx of Fe3+ into MVM by greater than 50%. Immunofluorescence and immunoblot analysis confirmed the localization of the protein in brush border plasma membranes. It was detectable in human intestinal mucosa and liver, but not in esophagus. These data indicate that the translocation of Fe3+ across human MVM represents a facilitated transport mechanism which is, at least in part, mediated by a membrane iron-binding protein.
R Teichmann, W Stremmel
Usage data is cumulative from May 2024 through May 2025.
Usage | JCI | PMC |
---|---|---|
Text version | 146 | 3 |
53 | 12 | |
Scanned page | 322 | 4 |
Citation downloads | 56 | 0 |
Totals | 577 | 19 |
Total Views | 596 |
Usage information is collected from two different sources: this site (JCI) and Pubmed Central (PMC). JCI information (compiled daily) shows human readership based on methods we employ to screen out robotic usage. PMC information (aggregated monthly) is also similarly screened of robotic usage.
Various methods are used to distinguish robotic usage. For example, Google automatically scans articles to add to its search index and identifies itself as robotic; other services might not clearly identify themselves as robotic, or they are new or unknown as robotic. Because this activity can be misinterpreted as human readership, data may be re-processed periodically to reflect an improved understanding of robotic activity. Because of these factors, readers should consider usage information illustrative but subject to change.