Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
  • Clinical Research and Public Health
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Video Abstracts
  • Reviews
    • View all reviews ...
    • Complement Biology and Therapeutics (May 2025)
    • Evolving insights into MASLD and MASH pathogenesis and treatment (Apr 2025)
    • Microbiome in Health and Disease (Feb 2025)
    • Substance Use Disorders (Oct 2024)
    • Clonal Hematopoiesis (Oct 2024)
    • Sex Differences in Medicine (Sep 2024)
    • Vascular Malformations (Apr 2024)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Clinical Research and Public Health
    • Research Letters
    • Letters to the Editor
    • Editorials
    • Commentaries
    • Editor's notes
    • Reviews
    • Viewpoints
    • 100th anniversary
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Video Abstracts
  • In-Press Preview
  • Clinical Research and Public Health
  • Research Letters
  • Letters to the Editor
  • Editorials
  • Commentaries
  • Editor's notes
  • Reviews
  • Viewpoints
  • 100th anniversary
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact

Usage Information

Tumor necrosis factor-alpha inhibits expression of pulmonary surfactant protein.
J R Wispé, … , R B Holtzman, J A Whitsett
J R Wispé, … , R B Holtzman, J A Whitsett
Published December 1, 1990
Citation Information: J Clin Invest. 1990;86(6):1954-1960. https://doi.org/10.1172/JCI114929.
View: Text | PDF
Research Article

Tumor necrosis factor-alpha inhibits expression of pulmonary surfactant protein.

  • Text
  • PDF
Abstract

Tumor necrosis factor-alpha (TNF-alpha) decreased the expression of pulmonary surfactant proteins SP-A and SP-B in human pulmonary adenocarcinoma cell lines. The effect of TNF alpha on SP-A content and mRNA in the pulmonary adenocarcinoma cell line, H441-4, was concentration and time dependent. TNF alpha decreased the cellular content of SP-A to less than 10% of control 48 h after addition. TNF alpha decreased de novo synthesis of SP-A and decreased the accumulation of SP-A in media. SP-A mRNA was decreased within 12 h of addition of TNF alpha, with nearly complete loss of SP-A mRNA observed after 24 h. Inhibitory effects of TNF alpha on SP-A mRNA were dose-related with nearly complete inhibition of SP-A mRNA caused by 25 ng/ml TNF alpha. The effects of TNF alpha on SP-A were distinct from the effects of interferon gamma which increased SP-A content approximately twofold in H441-4 cells. TNF alpha also decreased the content of SP-B mRNA. In contrast to the inhibitory effect of TNF alpha on SP-A and SP-B mRNA, TNF alpha increased mRNA encoding human manganese superoxide dismutase (Mn-SOD). TNF alpha did not inhibit growth, alter cell viability or beta-actin mRNA in either cell line. These in vitro studies demonstrate the marked pretranslational inhibitory effects of the cytokine, TNF alpha, on the expression of pulmonary surfactant proteins, SP-A and SP-B. The results support the concept that macrophage-derived cytokines may control surfactant protein expression.

Authors

J R Wispé, J C Clark, B B Warner, D Fajardo, W E Hull, R B Holtzman, J A Whitsett

×

Usage data is cumulative from May 2024 through May 2025.

Usage JCI PMC
Text version 171 3
PDF 47 22
Scanned page 217 2
Citation downloads 45 0
Totals 480 27
Total Views 507
(Click and drag on plot area to zoom in. Click legend items above to toggle)

Usage information is collected from two different sources: this site (JCI) and Pubmed Central (PMC). JCI information (compiled daily) shows human readership based on methods we employ to screen out robotic usage. PMC information (aggregated monthly) is also similarly screened of robotic usage.

Various methods are used to distinguish robotic usage. For example, Google automatically scans articles to add to its search index and identifies itself as robotic; other services might not clearly identify themselves as robotic, or they are new or unknown as robotic. Because this activity can be misinterpreted as human readership, data may be re-processed periodically to reflect an improved understanding of robotic activity. Because of these factors, readers should consider usage information illustrative but subject to change.

Advertisement

Copyright © 2025 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts