Advertisement
Research Article Free access | 10.1172/JCI114908
Department of Medicine, University of California, San Diego 92103.
Find articles by Alvaro-Gracia, J. in: JCI | PubMed | Google Scholar
Department of Medicine, University of California, San Diego 92103.
Find articles by Zvaifler, N. in: JCI | PubMed | Google Scholar
Department of Medicine, University of California, San Diego 92103.
Find articles by Firestein, G. in: JCI | PubMed | Google Scholar
Published December 1, 1990 - More info
The effects of a broad array of cytokines, individually and in combination, were determined on separate functions (proliferation, collagenase production, and granulocyte macrophage colony-stimulating factor [GM-CSF] production) and phenotype (expression of class II MHC antigens) of cultured fibroblast-like RA synoviocytes. The following recombinant cytokines were used: IL-1 beta, IL-2, IL-3, IL-4, IFN-gamma, tumor necrosis factor (TNF)-alpha, GM-CSF, and macrophage colony-stimulating factor (M-CSF). Only IFN-gamma induced HLA-DR (but not HLA-DQ) expression. TNF-alpha inhibited IFN-gamma-mediated HLA-DR expression (46.7 +/- 4.1% inhibition) and HLA-DR mRNA accumulation. This inhibitory effect was also observed in osteoarthritis synoviocytes. Only TNF-alpha and IL-1 increased synoviocyte proliferation (stimulation index 3.60 +/- 1.03 and 2.31 +/- 0.46, respectively). IFN-gamma (but none of the other cytokines) inhibited TNF-alpha-induced proliferation (70 +/- 14% inhibition) without affecting the activity of IL-1. Only IL-1 beta and TNF-alpha induced collagenase production (from less than 0.10 U/ml to 1.10 +/- 0.15 and 0.72 +/- 0.24, respectively). IFN-gamma decreased TNF-alpha-mediated collagenase production (69 +/- 19% inhibition) and GM-CSF production but had no effect on the action of IL-1. These data demonstrate mutual antagonism between IFN-gamma and TNF-alpha on fibroblast-like synoviocytes and suggest a novel homeostatic control mechanism that might be defective in RA where very little IFN-gamma is produced.
Images.