Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
  • Clinical Research and Public Health
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Video Abstracts
  • Reviews
    • View all reviews ...
    • Complement Biology and Therapeutics (May 2025)
    • Evolving insights into MASLD and MASH pathogenesis and treatment (Apr 2025)
    • Microbiome in Health and Disease (Feb 2025)
    • Substance Use Disorders (Oct 2024)
    • Clonal Hematopoiesis (Oct 2024)
    • Sex Differences in Medicine (Sep 2024)
    • Vascular Malformations (Apr 2024)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Clinical Research and Public Health
    • Research Letters
    • Letters to the Editor
    • Editorials
    • Commentaries
    • Editor's notes
    • Reviews
    • Viewpoints
    • 100th anniversary
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Video Abstracts
  • In-Press Preview
  • Clinical Research and Public Health
  • Research Letters
  • Letters to the Editor
  • Editorials
  • Commentaries
  • Editor's notes
  • Reviews
  • Viewpoints
  • 100th anniversary
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
Top
  • View PDF
  • Download citation information
  • Send a comment
  • Terms of use
  • Standard abbreviations
  • Need help? Email the journal
  • Top
  • Abstract
  • Version history
  • Article usage
  • Citations to this article (44)

Advertisement

Research Article Free access | 10.1172/JCI114900

Insulin regulates apolipoprotein B turnover and phosphorylation in rat hepatocytes.

T K Jackson, A I Salhanick, J Elovson, M L Deichman, and J M Amatruda

Department of Medicine, University of Rochester School of Medicine and Dentistry, New York 14642.

Find articles by Jackson, T. in: JCI | PubMed | Google Scholar

Department of Medicine, University of Rochester School of Medicine and Dentistry, New York 14642.

Find articles by Salhanick, A. in: JCI | PubMed | Google Scholar

Department of Medicine, University of Rochester School of Medicine and Dentistry, New York 14642.

Find articles by Elovson, J. in: JCI | PubMed | Google Scholar

Department of Medicine, University of Rochester School of Medicine and Dentistry, New York 14642.

Find articles by Deichman, M. in: JCI | PubMed | Google Scholar

Department of Medicine, University of Rochester School of Medicine and Dentistry, New York 14642.

Find articles by Amatruda, J. in: JCI | PubMed | Google Scholar

Published November 1, 1990 - More info

Published in Volume 86, Issue 5 on November 1, 1990
J Clin Invest. 1990;86(5):1746–1751. https://doi.org/10.1172/JCI114900.
© 1990 The American Society for Clinical Investigation
Published November 1, 1990 - Version history
View PDF
Abstract

Our laboratory has previously shown that insulin inhibits the secretion of newly-synthesized and immunoreactive apo B from rat hepatocytes. We have also shown that apo B is secreted as a phosphoprotein and that phosphorylation is increased in hypoinsulinemic nonketotic diabetes. The present studies were conducted to determine whether the ability of insulin to inhibit apo B secretion is related to alterations in apo B turnover and whether insulin itself affects apo B phosphorylation. Pulse-chase studies with [35S]methionine in primary cultures of hepatocytes from normal rats in the absence and presence of insulin show that the secretion of apo B100 and apo B48 are inhibited by insulin and that this inhibition may be due in part to enhanced intracellular degradation. In addition, there is a second intracellular apo B48 pool which is not insulin regulated or degraded. In experiments in which hepatocytes were incubated with [32P]orthophosphate, insulin decreased 32P incorporation into apo B100 (42%) with only small effects on apo B48 (11%). The small insulin effect on apo B48 may relate to an insulin-insensitive apo B48 intracellular pool. These studies show that insulin can affect the intracellular turnover, secretion, degradation, and phosphorylation of apo B and emphasize the differential regulation of apo B100 and apo B48 with regard to these parameters in rat liver.

Images.

Browse pages

Click on an image below to see the page. View PDF of the complete article

icon of scanned page 1746
page 1746
icon of scanned page 1747
page 1747
icon of scanned page 1748
page 1748
icon of scanned page 1749
page 1749
icon of scanned page 1750
page 1750
icon of scanned page 1751
page 1751
Version history
  • Version 1 (November 1, 1990): No description

Article tools

  • View PDF
  • Download citation information
  • Send a comment
  • Terms of use
  • Standard abbreviations
  • Need help? Email the journal

Metrics

  • Article usage
  • Citations to this article (44)

Go to

  • Top
  • Abstract
  • Version history
Advertisement
Advertisement

Copyright © 2025 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts