Uroporphyrinogen decarboxylase (URO-D) is a cytosolic heme-biosynthetic enzyme that converts uroporphyrinogen to coproporphyrinogen. Defects at the uroporphyrinogen decarboxylase locus cause the human genetic disease familial porphyria cutanea tarda. A splice site mutation has been found in a pedigree with familial porphyria cutanea tarda that causes exon 6 to be deleted from the mRNA. The intron/exon junctions on either side of exon 6 fall between codons, so the resulting protein is shorter than the normal protein, missing only the amino acids coded by exon 6. The shortened protein lacks catalytic activity, is rapidly degraded when exposed to human lymphocyte lysates, and is not detectable by Western blot analysis in lymphocyte lysates derived from affected individuals. The mutation was detected in five of 22 unrelated familial porphyria cutanea tarda pedigrees tested, so it appears to be common. This is the first splice site mutation to be found at the URO-D locus, and the first mutation that causes familial porphyria cutanea tarda to be found in more than one pedigree.
J R Garey, L M Harrison, K F Franklin, K M Metcalf, E S Radisky, J P Kushner
Usage data is cumulative from December 2023 through December 2024.
Usage | JCI | PMC |
---|---|---|
Text version | 141 | 1 |
73 | 41 | |
Figure | 0 | 2 |
Scanned page | 285 | 26 |
Citation downloads | 37 | 0 |
Totals | 536 | 70 |
Total Views | 606 |
Usage information is collected from two different sources: this site (JCI) and Pubmed Central (PMC). JCI information (compiled daily) shows human readership based on methods we employ to screen out robotic usage. PMC information (aggregated monthly) is also similarly screened of robotic usage.
Various methods are used to distinguish robotic usage. For example, Google automatically scans articles to add to its search index and identifies itself as robotic; other services might not clearly identify themselves as robotic, or they are new or unknown as robotic. Because this activity can be misinterpreted as human readership, data may be re-processed periodically to reflect an improved understanding of robotic activity. Because of these factors, readers should consider usage information illustrative but subject to change.