Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
  • Clinical Research and Public Health
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Video Abstracts
  • Reviews
    • View all reviews ...
    • Complement Biology and Therapeutics (May 2025)
    • Evolving insights into MASLD and MASH pathogenesis and treatment (Apr 2025)
    • Microbiome in Health and Disease (Feb 2025)
    • Substance Use Disorders (Oct 2024)
    • Clonal Hematopoiesis (Oct 2024)
    • Sex Differences in Medicine (Sep 2024)
    • Vascular Malformations (Apr 2024)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Clinical Research and Public Health
    • Research Letters
    • Letters to the Editor
    • Editorials
    • Commentaries
    • Editor's notes
    • Reviews
    • Viewpoints
    • 100th anniversary
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Video Abstracts
  • In-Press Preview
  • Clinical Research and Public Health
  • Research Letters
  • Letters to the Editor
  • Editorials
  • Commentaries
  • Editor's notes
  • Reviews
  • Viewpoints
  • 100th anniversary
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact

Usage Information

Glucocorticoids inhibit neurogenic plasma extravasation and prevent virus-potentiated extravasation in the rat trachea.
G Piedimonte, … , D M McDonald, J A Nadel
G Piedimonte, … , D M McDonald, J A Nadel
Published November 1, 1990
Citation Information: J Clin Invest. 1990;86(5):1409-1415. https://doi.org/10.1172/JCI114855.
View: Text | PDF
Research Article

Glucocorticoids inhibit neurogenic plasma extravasation and prevent virus-potentiated extravasation in the rat trachea.

  • Text
  • PDF
Abstract

Capsaicin increases the permeability of blood vessels in the rat tracheal mucosa through a mechanism involving the release of tachykinins from sensory nerves. This capsaicin-induced increase in vascular permeability is potentiated by viral infections of the respiratory tract. The present study was done to determine whether this "neurogenic plasma extravasation" can be inhibited by glucocorticoids, to learn the time course of this inhibition, and to determine whether glucocorticoids can prevent the potentiating effect of viral respiratory infections on neurogenic plasma extravasation. Groups of pathogen-free F344 rats were treated with dexamethasone for 2 or 8 h (4 mg/kg i.p.) or 48 or 120 h (0.5-4 mg/kg per d i.p.). Another group of rats was treated with dexamethasone for 120 h following the intranasal inoculation of Sendai virus. The magnitude of plasma extravasation produced by capsaicin or substance P was assessed after this treatment by using Monastral blue pigment and Evans blue dye as intravascular tracers. We found that dexamethasone reduced, in a dose-dependent fashion, the magnitude of plasma extravasation produced in the rat trachea by capsaicin and substance P. Significant inhibition was produced by a dose of dexamethasone as small as 0.5 mg/kg i.p. The effect of dexamethasone had a latency of several hours and reached a maximum after 2 d of treatment. Furthermore, dexamethasone prevented the potentiation of neurogenic plasma extravasation usually present after 5 d of Sendai virus respiratory infection.

Authors

G Piedimonte, D M McDonald, J A Nadel

×

Usage data is cumulative from May 2024 through May 2025.

Usage JCI PMC
Text version 124 5
PDF 47 17
Scanned page 214 1
Citation downloads 31 0
Totals 416 23
Total Views 439
(Click and drag on plot area to zoom in. Click legend items above to toggle)

Usage information is collected from two different sources: this site (JCI) and Pubmed Central (PMC). JCI information (compiled daily) shows human readership based on methods we employ to screen out robotic usage. PMC information (aggregated monthly) is also similarly screened of robotic usage.

Various methods are used to distinguish robotic usage. For example, Google automatically scans articles to add to its search index and identifies itself as robotic; other services might not clearly identify themselves as robotic, or they are new or unknown as robotic. Because this activity can be misinterpreted as human readership, data may be re-processed periodically to reflect an improved understanding of robotic activity. Because of these factors, readers should consider usage information illustrative but subject to change.

Advertisement

Copyright © 2025 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts