Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
  • Clinical Research and Public Health
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Video Abstracts
  • Reviews
    • View all reviews ...
    • Complement Biology and Therapeutics (May 2025)
    • Evolving insights into MASLD and MASH pathogenesis and treatment (Apr 2025)
    • Microbiome in Health and Disease (Feb 2025)
    • Substance Use Disorders (Oct 2024)
    • Clonal Hematopoiesis (Oct 2024)
    • Sex Differences in Medicine (Sep 2024)
    • Vascular Malformations (Apr 2024)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Clinical Research and Public Health
    • Research Letters
    • Letters to the Editor
    • Editorials
    • Commentaries
    • Editor's notes
    • Reviews
    • Viewpoints
    • 100th anniversary
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Video Abstracts
  • In-Press Preview
  • Clinical Research and Public Health
  • Research Letters
  • Letters to the Editor
  • Editorials
  • Commentaries
  • Editor's notes
  • Reviews
  • Viewpoints
  • 100th anniversary
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact

Usage Information

Induction of renal growth and injury in the intact rat kidney by dietary deficiency of antioxidants.
K A Nath, A K Salahudeen
K A Nath, A K Salahudeen
Published October 1, 1990
Citation Information: J Clin Invest. 1990;86(4):1179-1192. https://doi.org/10.1172/JCI114824.
View: Text | PDF
Research Article

Induction of renal growth and injury in the intact rat kidney by dietary deficiency of antioxidants.

  • Text
  • PDF
Abstract

We report induction of renal growth and injury in the intact rat kidney using a diet deficient in vitamin E and selenium. This diet was imposed in 3-wk-old male weanling rats, and after 9 wk, enhancement of growth, characterized by increased wet weight, dry weight, protein content, and DNA content appeared. Morphometric analyses revealed increased kidney volume, tubular epithelial volume, and mean glomerular volume. There were no differences in nephron number. The animals on the deficient diet displayed increased urinary protein excretion at 9 wk. Renal injury was also characterized by an interstitial cellular infiltrate and diminutions in glomerular filtration rate. Enhanced growth and injury were antedated by increased renal ammoniagenesis. The deficient diet did not induce metabolic acidosis, potassium depletion, glucose intolerance, or elevated plasma amino acid concentration. Enhancement of renal growth and ammoniagenesis by the deficient diet was not suppressible by chronic alkali therapy. Stimulation of renal growth could not be ascribed to increased intrarenal iron, induction of ornithine decarboxylase, or alterations in glomerular hemodynamics. Stimulation of renal ammoniagenesis by dietary deficiency of antioxidants is a novel finding, as is induction of growth and injury. We suggest that increased renal ammoniagenesis contributes to induction of renal growth and injury.

Authors

K A Nath, A K Salahudeen

×

Usage data is cumulative from May 2024 through May 2025.

Usage JCI PMC
Text version 140 1
PDF 51 12
Figure 0 1
Scanned page 454 1
Citation downloads 42 0
Totals 687 15
Total Views 702
(Click and drag on plot area to zoom in. Click legend items above to toggle)

Usage information is collected from two different sources: this site (JCI) and Pubmed Central (PMC). JCI information (compiled daily) shows human readership based on methods we employ to screen out robotic usage. PMC information (aggregated monthly) is also similarly screened of robotic usage.

Various methods are used to distinguish robotic usage. For example, Google automatically scans articles to add to its search index and identifies itself as robotic; other services might not clearly identify themselves as robotic, or they are new or unknown as robotic. Because this activity can be misinterpreted as human readership, data may be re-processed periodically to reflect an improved understanding of robotic activity. Because of these factors, readers should consider usage information illustrative but subject to change.

Advertisement

Copyright © 2025 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts