Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
  • Clinical Research and Public Health
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Video Abstracts
  • Reviews
    • View all reviews ...
    • Complement Biology and Therapeutics (May 2025)
    • Evolving insights into MASLD and MASH pathogenesis and treatment (Apr 2025)
    • Microbiome in Health and Disease (Feb 2025)
    • Substance Use Disorders (Oct 2024)
    • Clonal Hematopoiesis (Oct 2024)
    • Sex Differences in Medicine (Sep 2024)
    • Vascular Malformations (Apr 2024)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Clinical Research and Public Health
    • Research Letters
    • Letters to the Editor
    • Editorials
    • Commentaries
    • Editor's notes
    • Reviews
    • Viewpoints
    • 100th anniversary
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Video Abstracts
  • In-Press Preview
  • Clinical Research and Public Health
  • Research Letters
  • Letters to the Editor
  • Editorials
  • Commentaries
  • Editor's notes
  • Reviews
  • Viewpoints
  • 100th anniversary
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
Top
  • View PDF
  • Download citation information
  • Send a comment
  • Terms of use
  • Standard abbreviations
  • Need help? Email the journal
  • Top
  • Abstract
  • Version history
  • Article usage
  • Citations to this article (19)

Advertisement

Research Article Free access | 10.1172/JCI114707

Molecular basis of argininemia. Identification of two discrete frame-shift deletions in the liver-type arginase gene.

Y Haraguchi, J M Aparicio, M Takiguchi, I Akaboshi, M Yoshino, M Mori, and I Matsuda

Department of Pediatrics, Kumamoto University Medical School, Japan.

Find articles by Haraguchi, Y. in: PubMed | Google Scholar

Department of Pediatrics, Kumamoto University Medical School, Japan.

Find articles by Aparicio, J. in: PubMed | Google Scholar

Department of Pediatrics, Kumamoto University Medical School, Japan.

Find articles by Takiguchi, M. in: PubMed | Google Scholar

Department of Pediatrics, Kumamoto University Medical School, Japan.

Find articles by Akaboshi, I. in: PubMed | Google Scholar

Department of Pediatrics, Kumamoto University Medical School, Japan.

Find articles by Yoshino, M. in: PubMed | Google Scholar

Department of Pediatrics, Kumamoto University Medical School, Japan.

Find articles by Mori, M. in: PubMed | Google Scholar

Department of Pediatrics, Kumamoto University Medical School, Japan.

Find articles by Matsuda, I. in: PubMed | Google Scholar

Published July 1, 1990 - More info

Published in Volume 86, Issue 1 on July 1, 1990
J Clin Invest. 1990;86(1):347–350. https://doi.org/10.1172/JCI114707.
© 1990 The American Society for Clinical Investigation
Published July 1, 1990 - Version history
View PDF
Abstract

Argininemia results from a deficiency of arginase (EC 3.5.3.1), the last enzyme of the urea cycle in the liver. We examined the molecular basis for argininemia by constructing a genomic library followed by cloning and DNA sequencing. Discrete mutations were found on two alleles from the patient, a product of a nonconsanguineous marriage. There was a four-base deletion at protein-coding region 262-265 or 263-266 in exon 3 that would lead to a reading-frame shift after amino acid residue 87 and make a new stop codon at residue 132. The other was a one-base deletion at 77 or 78 in exon 2 that would lead to a reading-frame shift after residue 26 and make a stop codon at residue 31. For confirmation, genomic DNAs from the patient and from her parents were amplified by the polymerase chain reaction method. The patient was shown to be a compound heterozygote, inheriting an allele with the four-base deletion from the father and the other allele with the one-base deletion from the mother. These data seem to be the first evidence of a case of argininemia caused by two different deletion mutations.

Images.

Browse pages

Click on an image below to see the page. View PDF of the complete article

icon of scanned page 347
page 347
icon of scanned page 348
page 348
icon of scanned page 349
page 349
icon of scanned page 350
page 350
Version history
  • Version 1 (July 1, 1990): No description

Article tools

  • View PDF
  • Download citation information
  • Send a comment
  • Terms of use
  • Standard abbreviations
  • Need help? Email the journal

Metrics

  • Article usage
  • Citations to this article (19)

Go to

  • Top
  • Abstract
  • Version history
Advertisement
Advertisement

Copyright © 2025 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts