Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
  • Clinical Research and Public Health
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Video Abstracts
  • Reviews
    • View all reviews ...
    • Complement Biology and Therapeutics (May 2025)
    • Evolving insights into MASLD and MASH pathogenesis and treatment (Apr 2025)
    • Microbiome in Health and Disease (Feb 2025)
    • Substance Use Disorders (Oct 2024)
    • Clonal Hematopoiesis (Oct 2024)
    • Sex Differences in Medicine (Sep 2024)
    • Vascular Malformations (Apr 2024)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Clinical Research and Public Health
    • Research Letters
    • Letters to the Editor
    • Editorials
    • Commentaries
    • Editor's notes
    • Reviews
    • Viewpoints
    • 100th anniversary
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Video Abstracts
  • In-Press Preview
  • Clinical Research and Public Health
  • Research Letters
  • Letters to the Editor
  • Editorials
  • Commentaries
  • Editor's notes
  • Reviews
  • Viewpoints
  • 100th anniversary
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
Top
  • View PDF
  • Download citation information
  • Send a comment
  • Terms of use
  • Standard abbreviations
  • Need help? Email the journal
  • Top
  • Abstract
  • Version history
  • Article usage
  • Citations to this article (19)

Advertisement

Research Article Free access | 10.1172/JCI114676

Arginine vasopressin gene regulation in the homozygous Brattleboro rat.

J K Kim, F Soubrier, J B Michel, L Bankir, P Corvol, and R W Schrier

Department of Medicine, University of Colorado School of Medicine, Denver 80262.

Find articles by Kim, J. in: PubMed | Google Scholar

Department of Medicine, University of Colorado School of Medicine, Denver 80262.

Find articles by Soubrier, F. in: PubMed | Google Scholar

Department of Medicine, University of Colorado School of Medicine, Denver 80262.

Find articles by Michel, J. in: PubMed | Google Scholar

Department of Medicine, University of Colorado School of Medicine, Denver 80262.

Find articles by Bankir, L. in: PubMed | Google Scholar

Department of Medicine, University of Colorado School of Medicine, Denver 80262.

Find articles by Corvol, P. in: PubMed | Google Scholar

Department of Medicine, University of Colorado School of Medicine, Denver 80262.

Find articles by Schrier, R. in: PubMed | Google Scholar

Published July 1, 1990 - More info

Published in Volume 86, Issue 1 on July 1, 1990
J Clin Invest. 1990;86(1):14–16. https://doi.org/10.1172/JCI114676.
© 1990 The American Society for Clinical Investigation
Published July 1, 1990 - Version history
View PDF
Abstract

The Brattleboro rat, which has an autosomally recessive form of diabetes insipidus, has been reported to have a marked defect in the regulation of arginine vasopressin (AVP) gene expression. However, it is not known whether this is a primary genetic defect or occurs secondary to the urinary water losses which occur in the absence of circulating AVP in the Brattleboro rat. This present study was therefore undertaken to study AVP gene regulation in the Brattleboro rat after chronic AVP treatment by osmotic minipump for 2 wk. In Brattleboro rats without AVP treatment, neither urinary osmolality (Uosm) nor hypothalamic AVP mRNA was significantly changed after 24 h of fluid deprivation (Uosm, 413 +/- 33 to 588 +/- 44, NS; AVP mRNA, 39.33 +/- 2.95 to 46.39 +/- 2.71 pg/micrograms total RNA, NS). In contrast, when Brattleboro rats were treated with AVP for 2 wk, the regulation of AVP gene occurred in response to 24 h of fluid deprivation. In these studies, hypothalamic AVP mRNA was significantly increased compared with the Brattleboro rats still receiving AVP with free access of water (28.9 +/- 3.5 vs. 65.0 +/- 3.3 pg/micrograms total RNA, P less than 0.001). Further studies in Long-Evans rats demonstrate a similar response to a comparable degree of fluid deprivation as Uosm and AVP mRNA were significantly increased after 72 h of fluid deprivation (Uosm, 1,505 +/- 186 to 5,460 +/- 560 mosmol/kg, P less than 0.001; AVP mRNA, 31.7 +/- 3.9 to 77.5 +/- 4.6 pg/micrograms total RNA, P less than 0.001). These results indicate that AVP-replaced homozygous Brattleboro rats can regulate AVP gene expression normally in response to fluid deprivation. This finding indicates that the defect in AVP gene regulation in the Brattleboro rat not receiving AVP replacement is a secondary phenomenon rather than a primary genetic defect.

Browse pages

Click on an image below to see the page. View PDF of the complete article

icon of scanned page 14
page 14
icon of scanned page 15
page 15
icon of scanned page 16
page 16
Version history
  • Version 1 (July 1, 1990): No description

Article tools

  • View PDF
  • Download citation information
  • Send a comment
  • Terms of use
  • Standard abbreviations
  • Need help? Email the journal

Metrics

  • Article usage
  • Citations to this article (19)

Go to

  • Top
  • Abstract
  • Version history
Advertisement
Advertisement

Copyright © 2025 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts