Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
  • Clinical Research and Public Health
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Video Abstracts
  • Reviews
    • View all reviews ...
    • Complement Biology and Therapeutics (May 2025)
    • Evolving insights into MASLD and MASH pathogenesis and treatment (Apr 2025)
    • Microbiome in Health and Disease (Feb 2025)
    • Substance Use Disorders (Oct 2024)
    • Clonal Hematopoiesis (Oct 2024)
    • Sex Differences in Medicine (Sep 2024)
    • Vascular Malformations (Apr 2024)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Clinical Research and Public Health
    • Research Letters
    • Letters to the Editor
    • Editorials
    • Commentaries
    • Editor's notes
    • Reviews
    • Viewpoints
    • 100th anniversary
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Video Abstracts
  • In-Press Preview
  • Clinical Research and Public Health
  • Research Letters
  • Letters to the Editor
  • Editorials
  • Commentaries
  • Editor's notes
  • Reviews
  • Viewpoints
  • 100th anniversary
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact

Usage Information

Impairment of sympathetic activation during static exercise in patients with muscle phosphorylase deficiency (McArdle's disease).
S L Pryor, … , L A Bertocci, R G Victor
S L Pryor, … , L A Bertocci, R G Victor
Published May 1, 1990
Citation Information: J Clin Invest. 1990;85(5):1444-1449. https://doi.org/10.1172/JCI114589.
View: Text | PDF
Research Article

Impairment of sympathetic activation during static exercise in patients with muscle phosphorylase deficiency (McArdle's disease).

  • Text
  • PDF
Abstract

Static exercise in normal humans causes reflex increases in muscle sympathetic nerve activity (MSNA) that are closely coupled to the contraction-induced decrease in muscle cell pH, an index of glycogen degradation and glycolytic flux. To determine if sympathetic activation is attenuated when muscle glycogenolysis is blocked due to myophosphorylase deficiency (McArdle's disease), an inborn enzymatic defect localized to skeletal muscle, we now have performed microelectrode recordings of MSNA in four patients with McArdle's disease during static handgrip contraction. A level of static handgrip that more than doubled MSNA in normal humans had no effect on MSNA and caused an attenuated rise in blood pressure in the patients with myophosphorylase deficiency. In contrast, two nonexercise sympathetic stimuli, Valsalva's maneuver and cold pressor stimulation, evoked comparably large increases in MSNA in patients and normals. The principal new conclusion is that defective glycogen degradation in human skeletal muscle is associated with a specific reflex impairment in sympathetic activation during static exercise.

Authors

S L Pryor, S F Lewis, R G Haller, L A Bertocci, R G Victor

×

Usage data is cumulative from May 2024 through May 2025.

Usage JCI PMC
Text version 137 5
PDF 53 17
Scanned page 197 0
Citation downloads 52 0
Totals 439 22
Total Views 461
(Click and drag on plot area to zoom in. Click legend items above to toggle)

Usage information is collected from two different sources: this site (JCI) and Pubmed Central (PMC). JCI information (compiled daily) shows human readership based on methods we employ to screen out robotic usage. PMC information (aggregated monthly) is also similarly screened of robotic usage.

Various methods are used to distinguish robotic usage. For example, Google automatically scans articles to add to its search index and identifies itself as robotic; other services might not clearly identify themselves as robotic, or they are new or unknown as robotic. Because this activity can be misinterpreted as human readership, data may be re-processed periodically to reflect an improved understanding of robotic activity. Because of these factors, readers should consider usage information illustrative but subject to change.

Advertisement

Copyright © 2025 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts