Thrombin increases intracellular calcium ([Ca++]i) in several cell types and causes a positive inotropic effect in the heart. We examined the mechanism of the thrombin-induced [Ca++]i increase in chick embryonic heart cells loaded with the fluorescent calcium indicator, indo-1. Thrombin (1 U/ml) increased both systolic and diastolic [Ca++]i from 617 +/- 62 and 324 +/- 46 to 1041 +/- 93 and 587 +/- 38 nM, respectively. An initial rapid [Ca++]i increase was followed by a more sustained increase. There were associated increases in contraction strength, beat frequency, and action potential duration. The [Ca++]i increase was not blocked by tetrodotoxin or verapamil, but was blocked by pretreatment with pertussis toxin (100 ng/ml). The thrombin-induced [Ca++]i increase was partly due to intracellular calcium release, since it persisted after removal of external calcium. The [Ca++]i increase in zero calcium was more transitory than in normal calcium and was potentiated by 10 mM Li+. Thrombin also induced influx of calcium across the surface membrane, which could be monitored using Mn++ ions, which quench indo-1 fluorescence when they enter the cell. Thrombin-induced Mn++ entry was insensitive to verapamil, but was blocked by 2 mM Ni++. Thrombin increased inositol trisphosphates by 180% at 90 s and this effect was also blocked by pretreatment with pertussis toxin. Conclusion: thrombin promotes calcium entry and release in embryonic heart cells even when action potentials are inhibited. Both modes of [Ca++]i increase may be coupled to the receptor by pertussis toxin-sensitive G proteins.
W W Chien, R Mohabir, W T Clusin
Usage data is cumulative from March 2024 through March 2025.
Usage | JCI | PMC |
---|---|---|
Text version | 103 | 0 |
54 | 12 | |
Scanned page | 224 | 2 |
Citation downloads | 40 | 0 |
Totals | 421 | 14 |
Total Views | 435 |
Usage information is collected from two different sources: this site (JCI) and Pubmed Central (PMC). JCI information (compiled daily) shows human readership based on methods we employ to screen out robotic usage. PMC information (aggregated monthly) is also similarly screened of robotic usage.
Various methods are used to distinguish robotic usage. For example, Google automatically scans articles to add to its search index and identifies itself as robotic; other services might not clearly identify themselves as robotic, or they are new or unknown as robotic. Because this activity can be misinterpreted as human readership, data may be re-processed periodically to reflect an improved understanding of robotic activity. Because of these factors, readers should consider usage information illustrative but subject to change.