Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
  • Clinical Research and Public Health
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Video Abstracts
  • Reviews
    • View all reviews ...
    • Complement Biology and Therapeutics (May 2025)
    • Evolving insights into MASLD and MASH pathogenesis and treatment (Apr 2025)
    • Microbiome in Health and Disease (Feb 2025)
    • Substance Use Disorders (Oct 2024)
    • Clonal Hematopoiesis (Oct 2024)
    • Sex Differences in Medicine (Sep 2024)
    • Vascular Malformations (Apr 2024)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Clinical Research and Public Health
    • Research Letters
    • Letters to the Editor
    • Editorials
    • Commentaries
    • Editor's notes
    • Reviews
    • Viewpoints
    • 100th anniversary
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Video Abstracts
  • In-Press Preview
  • Clinical Research and Public Health
  • Research Letters
  • Letters to the Editor
  • Editorials
  • Commentaries
  • Editor's notes
  • Reviews
  • Viewpoints
  • 100th anniversary
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact

Usage Information

Effects of hypernatremia on organic brain osmoles.
Y H Lien, … , J I Shapiro, L Chan
Y H Lien, … , J I Shapiro, L Chan
Published May 1, 1990
Citation Information: J Clin Invest. 1990;85(5):1427-1435. https://doi.org/10.1172/JCI114587.
View: Text | PDF
Research Article Article has an altmetric score of 9

Effects of hypernatremia on organic brain osmoles.

  • Text
  • PDF
Abstract

We studied the effects of varying degrees and durations of hypernatremia on the brain concentrations of organic compounds believed to be important, so-called "idiogenic" osmoles in rats by means of conventional biochemical assays, nuclear magnetic resonance spectroscopy, and high-performance liquid chromatography. There were no changes in the concentrations of these osmoles (specifically myoinositol, sorbitol, betaine, glycerophosphorylcholine [GPC], phosphocreatine, glutamine, glutamate, and taurine) in rats with acute (2 h) hypernatremia (serum Na 194 +/- 5 meq/liter). With severe (serum Na 180 +/- 4 meq/liter) chronic (7 d) hypernatremia, the concentrations of each of these osmoles except sorbitol increased significantly: myoinositol (65%), betaine (54%), GPC (132%), phosphocreatine (73%), glutamine (143%), glutamate (84%), taurine (78%), and urea (191%). Together, these changes account for 35% of the change in total brain osmolality. With moderate (serum Na 159 +/- 3 meq/liter) hypernatremia, more modest but significant increases in the concentrations of each of these osmoles except betaine and sorbitol were noted. When rats with severe chronic hypernatremia were allowed to drink water freely, their serum sodium as well as the brain concentrations of all of these organic osmoles except myoinositol returned to normal within 2 d. It is concluded that: idiogenic osmoles play an important role in osmoregulation in the brain of rats subjected to hypernatremia; the development of these substances occur more slowly than changes in serum sodium; and the decrease in concentration of myoinositol occurs significantly more slowly than the decrease in serum sodium which occurs when animals are allowed free access to water. These observations may be relevant to the clinical management of patients with hypernatremia.

Authors

Y H Lien, J I Shapiro, L Chan

×

Usage data is cumulative from June 2024 through June 2025.

Usage JCI PMC
Text version 439 76
PDF 65 32
Scanned page 313 23
Citation downloads 51 0
Totals 868 131
Total Views 999
(Click and drag on plot area to zoom in. Click legend items above to toggle)

Usage information is collected from two different sources: this site (JCI) and Pubmed Central (PMC). JCI information (compiled daily) shows human readership based on methods we employ to screen out robotic usage. PMC information (aggregated monthly) is also similarly screened of robotic usage.

Various methods are used to distinguish robotic usage. For example, Google automatically scans articles to add to its search index and identifies itself as robotic; other services might not clearly identify themselves as robotic, or they are new or unknown as robotic. Because this activity can be misinterpreted as human readership, data may be re-processed periodically to reflect an improved understanding of robotic activity. Because of these factors, readers should consider usage information illustrative but subject to change.

Advertisement

Copyright © 2025 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts

Blogged by 1
80 readers on Mendeley
See more details