Bacterial sepsis often precedes the development of the adult respiratory distress syndrome (ARDS) and bacterial endotoxin (LPS) produces a syndrome similar to ARDS when infused into experimental animals. We determined in isolated, buffer-perfused rabbit lungs, free of plasma and circulating blood cells that LPS synergized with platelet activating factor (PAF) to injure the lung. In lungs perfused for 2 h with LPS-free buffer (less than 100 pg/ml), stimulation with 1, 10, or 100 nM PAF produced transient pulmonary hypertension and minimal edema. Lungs perfused for 2 h with buffer containing 100 ng/ml of Escherichia coli 0111:B4 LPS had slight elevation of pulmonary artery pressure (PAP) and did not develop edema. In contrast, lungs exposed to 100 ng/ml of LPS for 2 h had marked increases in PAP and developed significant edema when stimulated with PAF. LPS treatment increased capillary filtration coefficient, suggesting that capillary leak contributed to pulmonary edema. LPS-primed, PAF-stimulated lungs had enhanced production of thromboxane B2 (TXB) and 6-keto-prostaglandin F1 alpha (6KPF). Indomethacin completely inhibited PAF-stimulated production of TXB and 6KPF in control and LPS-primed preparations, did not inhibit the rise in PAP produced by PAF in control lungs, but blocked the exaggerated rise in PAP and edema seen in LPS-primed, PAF-stimulated lungs. The thromboxane synthetase inhibitor dazoxiben, and the thromboxane receptor antagonist, SQ 29,548, similarly inhibited LPS-primed pulmonary hypertension and edema after PAF-stimulation. These studies indicate that LPS primes the lung for enhanced injury in response to the physiologic mediator PAF by amplifying the synthesis and release of thromboxane in lung tissue.
W L Salzer, C E McCall
Usage data is cumulative from November 2023 through November 2024.
Usage | JCI | PMC |
---|---|---|
Text version | 133 | 0 |
64 | 26 | |
Scanned page | 267 | 4 |
Citation downloads | 35 | 0 |
Totals | 499 | 30 |
Total Views | 529 |
Usage information is collected from two different sources: this site (JCI) and Pubmed Central (PMC). JCI information (compiled daily) shows human readership based on methods we employ to screen out robotic usage. PMC information (aggregated monthly) is also similarly screened of robotic usage.
Various methods are used to distinguish robotic usage. For example, Google automatically scans articles to add to its search index and identifies itself as robotic; other services might not clearly identify themselves as robotic, or they are new or unknown as robotic. Because this activity can be misinterpreted as human readership, data may be re-processed periodically to reflect an improved understanding of robotic activity. Because of these factors, readers should consider usage information illustrative but subject to change.